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Abstract

We introduce a method to compare solutions of different equations in different domains. As a consequence, we define a new
kind of rearrangement which applies to solution of fully nonlinear equations F(x,u,Du,D2u) = 0, not necessarily in divergence
form, in convex domains and we obtain Talenti’s type results for this kind of rearrangement.
© 2014 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Rearrangements are among the most powerful tools in analysis. Roughly speaking they manipulate the shape of
an object while preserving some of its relevant geometric properties. Typically, a rearrangement of a function is
performed by acting separately on each of its level sets. Probably the most famous one is the radially symmetric
decreasing rearrangement, or Schwarz symmetrization: the Schwarz symmetrand of a continuous function w � 0 is
the function w� whose superlevel sets are concentric balls (usually centered at the origin) with the same measure
as the corresponding superlevel sets of w. Notice that w�, by definition, is equidistributed with w. When applied to
the study of solutions of partial differential equations with a divergence structure, this usually leads to a comparison
between the solution in a generic domain and the solution of (a possibly “rearranged” version of) the same equation
in a ball with the same measure of the original domain. An archetypal result of this type is the following (see [39]):
let u� be the Schwarz symmetrand of the solution u of{

�u + f (x) = 0 in Ω,

u = 0 on ∂Ω
(1)

and let v be the solution of{
�v + f �(x) = 0 in Ω�,

v = 0 on ∂Ω�,
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where Ω� is the ball (centered at the origin) with the same measure as Ω , f is a non-negative function and f � is the
Schwarz symmetrand of f . Then, under suitable summability assumptions on f , it holds

u� � v in Ω�, (2)

whence

‖u‖Lp(Ω) � ‖v‖Lp(Ω�) (3)

for every p > 0, including p = +∞.
Actually Talenti’s comparison principle (2)–(3) applies to more general situations and the Laplace operator in (1)

can be substituted by operators like

div
(
aij (x)uj

) + c(x)u

or even more general ones (see for instance [2–4,39–41]), but always in divergence form.
Here we introduce a new kind of rearrangement, which allows us to obtain comparison results similar to (2)–(3)

for very general equations, not necessarily in divergence form, between a classical solution in a convex domain Ω

and the solution in the ball Ω� with the same mean width as Ω . Recall that the mean width w(Ω) of Ω is defined as
follows:

w(Ω) = 1

nωn

∫
Sn−1

(
h(Ω, ξ) + h(Ω,−ξ)

)
dξ = 2

nωn

∫
Sn−1

h(Ω, ξ) dξ,

where h(Ω, ·) is the support function of Ω (then w(Ω,ξ) = w(Ω,−ξ) = h(Ω, ξ) + h(Ω,−ξ) is the width of Ω in
direction ξ or −ξ ) and ωn is the measure of the unit ball in R

n. When Ω is a ball, w(Ω) simply coincides with its
diameter; in the plane w(Ω) coincides with the perimeter of Ω , up to a factor π−1. See Section 2 for more details,
notation and definitions.

Precisely, we will deal with problems of the following type⎧⎪⎨
⎪⎩

F
(
x,u,Du,D2u

) = 0 in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

(4)

where F(x, t, ξ,A) is a continuous proper elliptic operator acting on R
n × R × R

n × Sn and Ω is an open bounded
convex subset of Rn. Here Du and D2u are the gradient and the Hessian matrix of the function u respectively, Sn is
the set of the n × n real symmetric matrices.

We will see how, given a solution u of problem (4) and a parameter p > 0, it is possible to associate to u a
symmetrand u

�
p which is defined in a ball Ω� having the same mean width as Ω . Under suitable assumptions on

the operator F (see Theorem 6.6) we obtain a pointwise comparison analogous to (2) between u
�
p and the solution v

in Ω�, that is

u�
p � v in Ω�, (5)

where v is the solution of⎧⎪⎨
⎪⎩

F
(
x, v,Dv,D2v

) = 0 in Ω�,

v = 0 on ∂Ω�,

v > 0 in Ω�.

(6)

Then from (5) we get

‖u‖Lq(Ω) � ‖v‖Lq(Ω�) for every q ∈ (0,+∞]. (7)

The precise definition of u
�
p is actually quite involved and it will be given in Section 5. Here we just say that u

�
p is not

equidistributed with u, in contrast with Schwarz symmetrization; indeed the measure of the super level sets of u
�
p is

greater than the measure of the corresponding super level sets of u.
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