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Abstract

In this paper, we show the existence and qualitative properties of traveling wave solutions to the Allen–Cahn equation with
fractional Laplacians. A key ingredient is the estimation of the traveling speed of traveling wave solutions.
© 2014 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Front propagation is a natural phenomenon which has appeared in phase transition, chemical reaction, combustion,
biological spreading, etc. The mechanism of front propagation is often the competing effects of diffusion and reaction.
Traveling wave solutions are typical profiles of physical states near the propagating fronts, and therefore are of great
importance in the study of reaction diffusion processes. There has been a tremendous amount of literature on traveling
wave solutions in mathematics as well as in various branches of applied sciences (see [41,66,2,4,39,9,10,8,48,14]
and references therein). Traveling wave solutions are essential building blocks in various phase field models, and
play an important role in pattern formation and phase separation (see, e.g., [5,28,38], etc., for the classical model
and [62,80,81] for nonlocal models with fractional Laplacians). Other nonlocal phase transition models and related
traveling wave solutions have been studied in [33,29,6,7,88], and others, where the kernels of convolution in the
nonlocal operators are bounded, and in [43,44,31] where the kernels are periodic.

In the study of front propagation, traditionally the diffusion process is quite standard and normal, in the sense
that the concerned particles or objects are engaged in a Brownian motion with a uniformly changed random variable.
The resulting diffusion effect on the physical state, when represented by a function mathematically, is the operation
of Laplacian on this function. Therefore, the difference of various reaction diffusion systems relies on the nonlinear
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reaction effect which varies in combustion, chemical reaction, phase transition, biological pattern formation, etc.
In general, a typical reaction diffusion system is in the form of

ut − �u = f (u) (1.1)

where f (u) is a nonlinear function.
Recently, however, there has been a fast increasing number of studies on front propagation of reaction diffusion

systems with an anomalous diffusion such as super diffusion, which plays important roles in various physical, chemi-
cal, biological and geological processes. (See, e.g., [75] for a brief summary and references therein.) Mathematically,
such a super diffusion is related to Lévy process and may be modeled by a fractional Laplace operator (−�)su with
0 < s < 1, whose Fourier transformation is (2π |ξ |)2s û. (See [65] and [72], etc.) Below an exact definition of fractional
Laplacians will be given.

In this paper, we study the traveling wave solutions of Allen–Cahn equation with a fractional Laplacian, where
the nonlinear reaction is a bistable potential. If the front of a solution in large time propagates at constant speed,
the solution is typically close to a profile depending on the distance away from the traveling fronts. Therefore we
shall study only traveling wave solutions of one spatial variable, although more complicated traveling waves solutions
do exist (see, e.g., [9,10,30,40,51,55–59,68,76,77,84,85,87,89,90,51] and references therein). More precisely, we are
going to study the traveling wave solutions of the following reaction diffusion equation:

ut (t, y) + (−�)su(t, y) = f
(
u(t, y)

)
, ∀t > 0, y ∈ R, (1.2)

where 0 < s < 1, and f ∈ C2(R) is a bistable potential satisfying

f (−1) = f (1) = 0, f ′(−1) < 0, f ′(1) < 0. (1.3)

Let G(u) := − ∫ u

−1 f (t)dt and t0 be the zero in (−1,1) of f = −G′ closest to 1, from (1.3), it is easy to see that
G(t0) > G(1). We shall focus on the unbalanced case where G(1) > G(−1) = 0 and consider the following condition

G(u) > G(−1) = 0, ∀u ∈ (−1,1) and f (u) < 0, ∀u ∈ Σ(G) := {
u ∈ (−1,1) : G(u) ≤ G(1)

}
. (1.4)

This condition means that G at all critical points in (−1,1) of f has value greater than G(1).
The fractional Laplacian is often defined by Fourier transformation, for any 0 < s < 1 and u ∈ S(Rn), the Schwartz

space of rapidly decaying smooth functions, the fractional Laplacian (−�)su is defined in [67] by

̂(−�)su(y) = (
2π |y|)2s

û(y), ∀y ∈ Rn.

It is well known that equivalently we have

(−�)su(y) = Cn,s P.V.

∫
Rn

u(y) − u(z)

|y − z|n+2s
dz, ∀y ∈ Rn, (1.5)

where Cn,s = s22s�( n+2s
2 )

π
n
2 �(1−s)

is a normalized constant. The above integral definition of fractional Laplacian can be used

for more general functions, in particular, for u ∈ C2(Rn).
Fractional Laplacian can also be defined as a Dirichlet to Neumann map. Define the n-dimensional fractional

Poisson kernel P n,s as

P n,s(x, y) = �(n+2s
2 )

π
n
2 �(s)

x2s

[x2 + |y|2] n+2s
2

, ∀(x, y) ∈ R+ × Rn = Rn+1+ .

The s-harmonic extension u of u ∈ C2(Rn) ∩ L∞(Rn) in Rn+1+ is given by

u(x, y) = P s(x, ·) ∗ u(y), ∀(x, y) ∈ Rn+1+ .

By L’Hospital’s rule and the dominated convergence theorem, we can get

lim
x↘0

−x1−2sux(x, y) = dn(s)(−�)su(y), ∀y ∈ Rn, (1.6)
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