
A composable real-time architecture for replicated railway applications

Stefan Resch a,⇑, Andreas Steininger b, Christoph Scherrer a

a Thales Austria GmbH, Handelskai 92, A-1200 Vienna, Austria
b Vienna University of Technology, Embedded Computing Systems Group E182-2, Treitlstr. 3, A-1040 Vienna, Austria

a r t i c l e i n f o

Article history:
Received 30 June 2014
Received in revised form 8 January 2015
Accepted 2 April 2015
Available online 16 April 2015

Keywords:
Composability
Mixed-criticality
Virtualization
Triple modular redundancy
Scheduling
Certification

a b s t r a c t

Triple-modular-redundant applications are widely used for fault-tolerant safety–critical computation.
They have strict timing requirements for correct operation. We present an architecture which provides
composability and mixed-criticality to support integration and to ease certification of such safety–critical
applications. In this architecture, an additional layer is required for the sharing/partitioning of resources.
This potentially jeopardizes the synchronization necessary for the triple-modular-redundant applica-
tions.

We investigate the effects of different (unsynchronized) scheduling methods for the resource-sharing
layer in this architecture and conclude that an out-of-the-box solution, which guarantees the technical
separation between applications with fast reaction time requirements is only feasible when executing
at most one instance of a triple-modular-redundant application per CPU-core for single and multi-core
CPUs. Only when accepting changes in the applications or the applications’ synchronization mechanisms,
are more flexible solutions with good performance and resource utilization available.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Increasing computational power and multi-core CPUs enable
integration of numerous functions within a single system, which
opens the potential for better utilization of resources through
appropriate sharing. Such a sharing of resources has many implica-
tions for safety–critical systems. One major aspect is that for
safety–critical systems, integration and changing parts of the sys-
tem requires (re-) certification of the whole system. It is the aim
of architectures providing composability and mixed criticality to
achieve this integration without affecting safety and availability
of the individual (pre-certified) applications, while considering
only the new setup or changes for certification. This is a well
known approach in the avionics domain with the Integrated
Modular Avionics defined in DO-297 [1] and the corresponding
ARINC 653 standards [2].

In this paper, we present an architecture supporting the com-
posable integration of fail-safe triple modular redundant (TMR)
applications for the railway domain. These applications have
strong requirements on the properties of the internal communica-
tion channels and reactivity of individually synchronized replicas.
Together with their lower-level software, the applications assume
full access to the hardware resources. With the introduction of a

layer for sharing these resources, this full access is inevitably
removed. The arising problems are now twofold. First, the applica-
tions’ timely behaviour is affected due to the (now) restricted
access to these resources. Secondly, this restriction changes the
basis of the applications’ safety concepts for certification.

According to Kopetz [3, pp. 102–103], there are four principles
of composability:

� Independent development of components,
� stability of prior services,
� non-interfering interactions, and
� preservation of the component abstraction in case of failures.

In our approach, which is based on the analysis from [4], the inde-
pendent development and certification of sub-services, as well as
the integration environment is enabled through the use of con-
tracts, i.e. an element is certified only with respect to its contract.
Also, the stability of prior services is addressed with the contract
concept. Instead of non-interfering interactions, we require pre-
dictability for determining whether the individual required reaction
times of the sub-systems prior to integration can be satisfied.

In the following, we use the term function-set (FS) for a sub-
service and FS nodes for the entities, which in compound make
its functionality fault tolerant, e.g. replica of a process. These FSs
are then deployed in an integration environment (IE), providing
computation on the IE nodes and communication resources,

http://dx.doi.org/10.1016/j.sysarc.2015.04.003
1383-7621/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +43 1 27711 3123; fax: +43 1 27711 3171.
E-mail address: stefan.resch@thalesgroup.com (S. Resch).

Journal of Systems Architecture 61 (2015) 472–485

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/locate /sysarc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2015.04.003&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2015.04.003
mailto:stefan.resch@thalesgroup.com
http://dx.doi.org/10.1016/j.sysarc.2015.04.003
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc


together with error containment regions as illustrated in Fig. 1. The
local instantiation of the error containment regions on the IE nodes
are partitions, which ensure safe operation when individual FSs or
FS nodes fail, i.e. provide the preservation of the component
abstraction in case of failures. The fault containment regions for
the FS nodes are established through the use of physically disjoint
IE nodes in the IE. Certification is then performed in three steps:

(1) Each safety–critical FS is certified together with its FS
requirements contract, which specifies the required resources
and features for safe FS operation.
(2) An IE is certified with its IE contract stating the provided
resources and features for the FSs, and the IE’s feasibility evalu-
ation method used for FS integration.
(3) The overall system is certified by matching the FSs contracts
to the IE contract, together with performing the IE contract’s
feasibility evaluation method in a deployment contract.

Since the error containment regions provide sufficient isolation,
this approach is also suitable for mixed criticality, i.e. deploying
FSs with different levels of criticality.

When mapping these entities to the CENELEC E.N. 50129 [5]
standard, one additional common element is necessary. The IE is
a generic product and each FS in itself a generic application. Both
are based on another common generic product defining the con-
tract concept and architectural elements. An overall system is then
the specific application consisting of the integrated FSs and used IE.

It is important to note that the error containment regions for
composability are merely concerned with the separation issue,
i.e. protecting one FS from the failure of another, with whom it
shares resources. They are not used for tolerating faults in these
resources.

The TMR approach used by our targeted applications is a widely
spread technique for attaining fault tolerance in safety–critical
systems. That is why combining its use with composability is of
interest. With TMR, a system is separated into three fault contain-
ment regions. In each of these, tasks compute the same workload
as in the other ones. In our model, fault containment is orthogonal
to error containment as illustrated in Fig. 1. Fault containment is
ensured by using different IE nodes when deploying FS nodes
belonging to the same FS, while error containment is provided
between FSs through separation of the FS nodes’ resources on the
IE nodes and interconnect. The FS nodes are synchronized via out-
put-data exchange and voting. Additionally, a membership service
is necessary for isolation and recovery of faulty FS nodes. Various
synchronization methods exist for TMR, from hardware imple-
mented to purely software-based approaches. The latter ensures
the highest flexibility with respect to the integration environment,

since no assumptions on the underlying hardware features are
made for replication. With software-based TMR single random
hardware faults and single quasi-random software faults [6] can
be tolerated. Software-based TMR strongly relies on timeouts for
supervising progress and synchronization of replicas. As will be
discussed later on, the degree of synchronization that can be
attained among the replicated FS nodes is a key property of the
TMR system. As already mentioned, with the introduction of
resource sharing, the timing behaviour of communication and
computation ultimately gets obfuscated. This compromises the
synchronization quality for TMR, potentially even to the point
where proper operation becomes jeopardized, also for fail-safe sys-
tems. It is exactly this issue that has to be solved in order to pro-
vide an integration environment for TMR applications.

Consequently, the task is to find a strategy that balances the fol-
lowing three different objectives:

� Provide a technical foundation for independent certification,
� Fulfil the reaction time requirements of the applications, and
� Efficiently use the available hardware resources to take advan-

tage of the integration.

Based on these objectives we evaluate different IEs providing static-
cyclic, fixed-priority and EDF scheduling strategies for integrating
TMR-based FSs. We show that without changing the TMR synchro-
nization mechanism or applications within the FSs only IEs using
fixed-priority scheduling with at most one safety critical FS node
running per CPU core provide a good balance. Tighter integration
of safety–critical applications with good performance is only possi-
ble with changes. Here, we propose two solutions. The first one uses
fixed-priority scheduling, but weakens the separation property of
the IE, whereas the second one with EDF requires extensive changes
in the applications themselves.

Following a survey of related work in the next section, we
describe the targeted safety–critical applications and their
requirements towards the IE in Section 3. The architecture and
model used for analysis are presented in Section 4, followed by a
description of the synchronization mechanisms in Section 5. In
Section 6 we present the scheduling analysis and possible
improvements for the IE with a classic TMR architecture and in
Section 7 for an IE providing dynamic deployment. Results
obtained with a prototype are discussed in Section 8, and we finally
conclude the paper in Section 9.

2. Related work

The already mentioned ARINC 653 platform standard [2] and
the AUTOSAR platform standard [7] provide methods for achieving
composability and mixed-criticality in the avionics and automotive
domain. These two platform architectures are based on software
partitioning, a concept introduced together with the separation
kernel by Rushby [8]. The MILS (Multiple Independent Levels of
Security) separation kernels also have the same origin [9]. Such
kernels provide strong space and time partitioning. Server class
hypervisors like Xen [10] provide space partitioning for virtual
machines with the use of virtualization technology, while hypervi-
sors designed for real-time systems may also guarantee time par-
titioning, e.g. XtratuM [11]. Gu and Zhao [12] provide a good
overview on the state-of-the-art of virtualization for embedded
systems. Effects on partitioning with the use of multi-core have
been studied by Nowotsch and Paulitsch [13]. Time and space par-
titioning are also core principles of the time-triggered architecture
(TTA) [14]. Time-triggering has furthermore been used to provide a
composable environment within a system-on-chip [15]. Annex F of
the IEC 61508–3 standard [16] presents techniques for establishing

Er
ro

r C
on

ta
in

m
en

t R
eg

io
ns

Fault Containment Regions

FS 1

FS 2

FS 3

FS node

IE nodePartition on IE node

Fig. 1. Elements of the composable architecture.

S. Resch et al. / Journal of Systems Architecture 61 (2015) 472–485 473



Download English Version:

https://daneshyari.com/en/article/460408

Download Persian Version:

https://daneshyari.com/article/460408

Daneshyari.com

https://daneshyari.com/en/article/460408
https://daneshyari.com/article/460408
https://daneshyari.com

