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Abstract

We show the existence of self-similar solutions with fat tails for Smoluchowski’s coagulation equation for homogeneous kernels
satisfying Cy <x_“yb +xby_“> <K(x,y)<Cy <x_“yb +xby_“> with a > 0 and b < 1. This covers especially the case of

Smoluchowski’s classical kernel K (x, y) = (x1/3 + y1/3)(x7]/3 + y71/3).

For the proof of existence we take a self-similar solution /. for a regularized kernel K, and pass to the limit ¢ — O to obtain
a solution for the original kernel K. The main difficulty is to establish a uniform lower bound on 4. The basic idea for this is to
consider the time-dependent problem and to choose a special test function that solves the dual problem.
© 2015 Elsevier Masson SAS. All rights reserved.

Résumé

Nous démontrons I’existence des solutions auto-similaires avec queues lourdes pour 1’équation de coagulation de Smoluchowski
avec un noyau K satisfaisant Cy (x_“yb +xby_”) <K(x,y)<Cy (x_“yb +xby_“> avec a > 0 et b < 1. Cela contient en

particulier le noyau classique de Smoluchowski K (x, y) = 134 yl/3)(x71/3 + y7]/3).
Pour la démonstration de 1’existence nous prenons une solution auto-similaire #, pour un noyau régularisé K, et nous obtenons
une solution pour le noyau original K en passant a la limite ¢ — 0. La difficulté principale consiste a établir une borne inférieure
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pour hg. La clé ici est de considérer le probleme dépendant du temps et choisir une solution du probléme dual comme fonction test
dans la formulation faible de 1’équation auto-similaire.
© 2015 Elsevier Masson SAS. All rights reserved.
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1. Introduction
1.1. Smoluchowski’s equation and self-similarity

Smoluchowski’s coagulation equation [13] describes irreversible aggregation of clusters through binary collisions
by a mean-field model for the density f (&, ¢) of clusters of mass &. It is assumed that the rate of coagulation of clusters
of size £ and 7 is given by a rate kernel K = K (£, n), such that the evolution of f is determined by
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Applications in which this model has been used are numerous and include, for example, aerosol physics, polymeriza-
tion, astrophysics and mathematical biology (see e.g. [1,3]).

A topic of particular interest in the theory of coagulation is the scaling hypothesis on the long-time behaviour
of solutions to (1). Indeed, for homogeneous kernels one expects that solutions converge to a uniquely determined
self-similar profile. This issue is however only well-understood for the solvable kernels K (x, y) =2, K(x,y) =x+y
and K (x, y) = xy. In these cases it is known [9] that (1) has one fast-decaying self-similar solution with finite mass
and a family of so-called fat-tail or heavy-tailed self-similar solutions with power-law decay. Such solutions with
certain infinite moments have been studied extensively in probability theory and are of considerable interest since
they predict a high probability of the occurrence of extreme events. Furthermore, in [9] the domains of attraction of all
these self-similar solutions under the evolution (1) have been completely characterized. For non-solvable kernels much
less is known and it is exclusively for the case of kernels with homogeneity y < 1. In [5,6] existence of self-similar
solutions with finite mass has been established for a large range of kernels and some properties of those solutions
have been investigated in [2,4,7]. More recently, the first existence results of self-similar solutions with fat tails have
been proved, first for the diagonal kernel [11], then for kernels that are bounded by C(x” + yY) for y € [0, 1) [12].
It is the goal of this paper to extend the results in [12] to singular kernels, such as Smoluchowski’s classical kernel
K(x,y) =@ yHalB 4 y=15),

In order to describe our results in more detail, we first derive the equation for self-similar solutions. Such solutions
to (1) for kernels of homogeneity y < 1 are of the form
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where the self-similar profile g solves
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It is known that for some kernels the self-similar profiles are singular at the origin, so that the integrals on the right-
hand side are not finite and it is necessary to rewrite the equation in a weaker form. Multiplying the equation by x and
rearranging we obtain that a weak self-similar solution g solves

X o0 1
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