Self-similar solutions with fat tails for Smoluchowski's coagulation equation with singular kernels

Solutions auto-similaire avec queues lourdes pour l'équation de coagulation de Smoluchowski avec noyaux singuliers

B. Niethammer ${ }^{1}$, S. Throm ${ }^{*}$, J.J.L. Velázquez ${ }^{2}$
Institute of Applied Mathematics, University of Bonn, Endenicher Allee 60, 53115 Bonn, Germany

Received 6 November 2014; received in revised form 17 March 2015; accepted 13 April 2015
Available online 27 April 2015

Abstract

We show the existence of self-similar solutions with fat tails for Smoluchowski's coagulation equation for homogeneous kernels satisfying $C_{1}\left(x^{-a} y^{b}+x^{b} y^{-a}\right) \leq K(x, y) \leq C_{2}\left(x^{-a} y^{b}+x^{b} y^{-a}\right)$ with $a>0$ and $b<1$. This covers especially the case of Smoluchowski's classical kernel $K(x, y)=\left(x^{1 / 3}+y^{1 / 3}\right)\left(x^{-1 / 3}+y^{-1 / 3}\right)$.

For the proof of existence we take a self-similar solution h_{ε} for a regularized kernel K_{ε} and pass to the limit $\varepsilon \rightarrow 0$ to obtain a solution for the original kernel K. The main difficulty is to establish a uniform lower bound on h_{ε}. The basic idea for this is to consider the time-dependent problem and to choose a special test function that solves the dual problem.

© 2015 Elsevier Masson SAS. All rights reserved.

Résumé

Nous démontrons l'existence des solutions auto-similaires avec queues lourdes pour l'équation de coagulation de Smoluchowski avec un noyau K satisfaisant $C_{1}\left(x^{-a} y^{b}+x^{b} y^{-a}\right) \leq K(x, y) \leq C_{2}\left(x^{-a} y^{b}+x^{b} y^{-a}\right)$ avec $a>0$ et $b<1$. Cela contient en particulier le noyau classique de Smoluchowski $K(x, y)=\left(x^{1 / 3}+y^{1 / 3}\right)\left(x^{-1 / 3}+y^{-1 / 3}\right)$.

Pour la démonstration de l'existence nous prenons une solution auto-similaire h_{ε} pour un noyau régularisé K_{ε} et nous obtenons une solution pour le noyau original K en passant à la limite $\varepsilon \rightarrow 0$. La difficulté principale consiste à établir une borne inférieure

[^0]pour h_{ε}. La clé ici est de considérer le problème dépendant du temps et choisir une solution du problème dual comme fonction test dans la formulation faible de l'équation auto-similaire.
© 2015 Elsevier Masson SAS. All rights reserved.

Keywords: Smoluchowski's coagulation equation; Self-similar solution; Singular kernel; Fat tail; Dual problem

1. Introduction

1.1. Smoluchowski's equation and self-similarity

Smoluchowski's coagulation equation [13] describes irreversible aggregation of clusters through binary collisions by a mean-field model for the density $f(\xi, t)$ of clusters of mass ξ. It is assumed that the rate of coagulation of clusters of size ξ and η is given by a rate kernel $K=K(\xi, \eta)$, such that the evolution of f is determined by

$$
\begin{equation*}
\partial_{t} f(\xi, t)=\frac{1}{2} \int_{0}^{\xi} K(\xi-\eta, \eta) f(\xi-\eta, t) f(\eta, t) \mathrm{d} \eta-f(\xi, t) \int_{0}^{\infty} K(\xi, \eta) f(\eta, t) \mathrm{d} \eta \tag{1}
\end{equation*}
$$

Applications in which this model has been used are numerous and include, for example, aerosol physics, polymerization, astrophysics and mathematical biology (see e.g. [1,3]).

A topic of particular interest in the theory of coagulation is the scaling hypothesis on the long-time behaviour of solutions to (1). Indeed, for homogeneous kernels one expects that solutions converge to a uniquely determined self-similar profile. This issue is however only well-understood for the solvable kernels $K(x, y)=2, K(x, y)=x+y$ and $K(x, y)=x y$. In these cases it is known [9] that (1) has one fast-decaying self-similar solution with finite mass and a family of so-called fat-tail or heavy-tailed self-similar solutions with power-law decay. Such solutions with certain infinite moments have been studied extensively in probability theory and are of considerable interest since they predict a high probability of the occurrence of extreme events. Furthermore, in [9] the domains of attraction of all these self-similar solutions under the evolution (1) have been completely characterized. For non-solvable kernels much less is known and it is exclusively for the case of kernels with homogeneity $\gamma<1$. In [5,6] existence of self-similar solutions with finite mass has been established for a large range of kernels and some properties of those solutions have been investigated in [2,4,7]. More recently, the first existence results of self-similar solutions with fat tails have been proved, first for the diagonal kernel [11], then for kernels that are bounded by $C\left(x^{\gamma}+y^{\gamma}\right)$ for $\gamma \in[0,1)$ [12]. It is the goal of this paper to extend the results in [12] to singular kernels, such as Smoluchowski's classical kernel $K(x, y)=\left(x^{1 / 3}+y^{1 / 3}\right)\left(x^{-1 / 3}+y^{-1 / 3}\right)$.

In order to describe our results in more detail, we first derive the equation for self-similar solutions. Such solutions to (1) for kernels of homogeneity $\gamma<1$ are of the form

$$
\begin{equation*}
f(\xi, t)=\frac{\beta}{t^{\alpha}} g(x), \quad \alpha=1+(1+\gamma) \beta, \quad x=\frac{\xi}{t^{\beta}}, \tag{2}
\end{equation*}
$$

where the self-similar profile g solves

$$
\begin{equation*}
-\frac{\alpha}{\beta} g-x g^{\prime}(x)=\frac{1}{2} \int_{0}^{x} K(x-y, y) g(x-y) g(y) \mathrm{d} y-g(x) \int_{0}^{\infty} K(x, y) g(y) \mathrm{d} y . \tag{3}
\end{equation*}
$$

It is known that for some kernels the self-similar profiles are singular at the origin, so that the integrals on the righthand side are not finite and it is necessary to rewrite the equation in a weaker form. Multiplying the equation by x and rearranging we obtain that a weak self-similar solution g solves

$$
\begin{equation*}
\partial_{x}\left(x^{2} g(x)\right)=\partial_{x}\left[\int_{0}^{x} \int_{x-y}^{\infty} y K(y, z) g(z) g(y) \mathrm{d} z \mathrm{~d} y\right]+\left((1-\gamma)-\frac{1}{\beta}\right) x g(x) \tag{4}
\end{equation*}
$$

https://daneshyari.com/en/article/4604080

Download Persian Version:

https://daneshyari.com/article/4604080

Daneshyari.com

[^0]: * Corresponding author. Tel.: +49 (0) 2287362278.

 E-mail addresses: niethammer@iam.uni-bonn.de (B. Niethammer), throm@iam.uni-bonn.de (S. Throm), velazquez@iam.uni-bonn.de (J.J.L. Velázquez).

 1 Tel.: +49 (0) 228732216.
 2 Tel.: +49 (0) 2287362378 .

