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Abstract
We consider fully nonlinear obstacle-type problems of the form

F(Dzu,x) = f(x) ae.in Bj N,
|D%u| < K ae.in B\,

where 2 is an open set and K > 0. In particular, structural conditions on F are presented which ensure that w2 (B 1) solutions
achieve the optimal cllp /2) regularity when f is Holder continuous. Moreover, if f is positive on By, Lipschitz continuous,

and {u # 0} C Q, we obtain interior C ! regularity of the free boundary under a uniform thickness assumption on {u = 0}. Lastly,
we extend these results to the parabolic setting.
© 2015 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Obstacle-type problems appear in several mathematical disciplines such as minimal surface theory, potential theory,
mean field theory of superconducting vortices, optimal control, fluid filtration in porous media, elasto-plasticity, and
financial mathematics [1-5]. The classical obstacle problem involves minimizing the Dirichlet energy on a given
domain in the space of square integrable functions with square integrable gradient constrained to remain above a fixed
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obstacle function and with prescribed boundary data. Due to the structure of the Dirichlet integral, this minimization
process leads to the free boundary problem

Au= fxu>0) in By,

where B; C R” is the unit ball centered at the origin. A simple one-dimensional example shows that even if f € C*°,
u is not more regular than C!-!, and Lipschitz continuity of f yields this optimal regularity via the Harnack inequality.
An obstacle-type problem is a free boundary problem of the form

Au= fxq inBy, (D

where 2 is an (unknown) open set. If 2 = {u # 0} and f is Lipschitz continuous, monotonicity formulas may be
used to prove C'! regularity of u. Nevertheless, this method strongly depends on the Lipschitz continuity of f.
Recently, a harmonic analysis technique was developed in [6] to prove optimal regularity under the weakest possible
assumption: if the Newtonian potential of f is C!-!, then u is uniformly C!-! in B, /2, where the bound on the Hessian
depends on [|u|| o< (B;)-

Fully nonlinear analogs of (1) have been considered by several researchers. The case

F(D*u)= fxq inBi

has been studied in [7] for 2 = {u > 0} and in [8] when 2 = {u # 0}. Moreover, a fully nonlinear version of the
method in [6] was developed in [9] and applied to

{F(Dzu)zl a.e.in Bj N,
[D*u| <K  ae.in B\,

where €2 is an open set, K > 0, and u € Wz’”(Bl). The idea is to replace the projection on second-order harmonic
polynomials carried out in [6] with a projection involving the BMO estimates in [ 10]. For convex operators, this tool
is employed to prove that u is C'! in B; »2 and, under a standard thickness assumption, that the free boundary is
locally C!.

Our main result is Theorem 1 and establishes optimal regularity for the more general free boundary problem

{ F(D%u,x)= f(x) ae.in BN,
|D*u| < K a.e.in B1\2,

where 2 is an open set, K > 0, f is Holder continuous, and under certain structural conditions on F (see §1.1). As
a direct consequence, we obtain optimal regularity for general operators F(D?u, Du, u, x) and thereby address [9,
Remark 1.1], see Corollary 2. Free boundary problems of this type appear in the mean field theory of superconducting
vortices [3, Introduction] and optimal switching problems [11].

The underlying principle in the proof is to locally apply Caffarelli’s elliptic regularity theory [12] to rescaled
variants of (2) in order to obtain a bound on D?%u. The main difficulty lies in verifying an average L" decay of the
right-hand side in question. However, one may exploit that u € C'-%(B;), D*u is bounded in B;\2, and the BMO
estimates in [10] to prove that locally around a free boundary point, the coincidence set Bj\£2 decays fast enough to
ensure the L" decay. Our assumptions on F' involve conditions which enable us to utilize standard tools such as the
maximum principle and Evans—Krylov theorem.

Moreover, once we establish that u € C! in B; /2, the corresponding regularity theory for the free boundary fol-
lows in a standard way through the classification of blow-up solutions and is carried out in §3. Indeed, non-degeneracy
holds if f is positive on By and {|Vu| # 0} C 2. Furthermore, blow-up solutions around thick free boundary points
are half-space solutions, and this fact combines with a directional monotonicity result to yield C' regularity of the
free boundary, see Theorem 15 for a precise statement.

Finally, we generalize the above-mentioned results to the parabolic setting (see also [13]) in §4 by considering the
free boundary problem

Hwu(X),X)= f(X) ae. in Q] N,
{ID2u| <K a.e.in 01\,

where X = (x,1) e R" x R, H(u(X), X) := F(D*u(X), X) — d;u(X), Q1 is the parabolic cylinder B (0) x (—1,0),
€ C Qg is some open set, and K > 0.
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