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Abstract

We consider fully nonlinear obstacle-type problems of the form{
F(D2u,x) = f (x) a.e. in B1 ∩ �,

|D2u| ≤ K a.e. in B1\�,

where � is an open set and K > 0. In particular, structural conditions on F are presented which ensure that W2,n(B1) solutions 
achieve the optimal C1,1(B1/2) regularity when f is Hölder continuous. Moreover, if f is positive on B1, Lipschitz continuous, 
and {u �= 0} ⊂ �, we obtain interior C1 regularity of the free boundary under a uniform thickness assumption on {u = 0}. Lastly, 
we extend these results to the parabolic setting.
© 2015 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Obstacle-type problems appear in several mathematical disciplines such as minimal surface theory, potential theory, 
mean field theory of superconducting vortices, optimal control, fluid filtration in porous media, elasto-plasticity, and 
financial mathematics [1–5]. The classical obstacle problem involves minimizing the Dirichlet energy on a given 
domain in the space of square integrable functions with square integrable gradient constrained to remain above a fixed 
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obstacle function and with prescribed boundary data. Due to the structure of the Dirichlet integral, this minimization 
process leads to the free boundary problem

�u = f χ{u>0} in B1,

where B1 ⊂R
n is the unit ball centered at the origin. A simple one-dimensional example shows that even if f ∈ C∞, 

u is not more regular than C1,1, and Lipschitz continuity of f yields this optimal regularity via the Harnack inequality.
An obstacle-type problem is a free boundary problem of the form

�u = f χ� in B1, (1)

where � is an (unknown) open set. If � = {u �= 0} and f is Lipschitz continuous, monotonicity formulas may be 
used to prove C1,1 regularity of u. Nevertheless, this method strongly depends on the Lipschitz continuity of f . 
Recently, a harmonic analysis technique was developed in [6] to prove optimal regularity under the weakest possible 
assumption: if the Newtonian potential of f is C1,1, then u is uniformly C1,1 in B1/2, where the bound on the Hessian 
depends on ‖u‖L∞(B1).

Fully nonlinear analogs of (1) have been considered by several researchers. The case

F(D2u) = f χ� in B1

has been studied in [7] for � = {u > 0} and in [8] when � = {u �= 0}. Moreover, a fully nonlinear version of the 
method in [6] was developed in [9] and applied to{

F(D2u) = 1 a.e. in B1 ∩ �,

|D2u| ≤ K a.e. in B1\�,

where � is an open set, K > 0, and u ∈ W 2,n(B1). The idea is to replace the projection on second-order harmonic 
polynomials carried out in [6] with a projection involving the BMO estimates in [10]. For convex operators, this tool 
is employed to prove that u is C1,1 in B1/2 and, under a standard thickness assumption, that the free boundary is 
locally C1.

Our main result is Theorem 1 and establishes optimal regularity for the more general free boundary problem{
F(D2u,x) = f (x) a.e. in B1 ∩ �,

|D2u| ≤ K a.e. in B1\�,
(2)

where � is an open set, K > 0, f is Hölder continuous, and under certain structural conditions on F (see §1.1). As 
a direct consequence, we obtain optimal regularity for general operators F(D2u, Du, u, x) and thereby address [9, 
Remark 1.1], see Corollary 2. Free boundary problems of this type appear in the mean field theory of superconducting 
vortices [3, Introduction] and optimal switching problems [11].

The underlying principle in the proof is to locally apply Caffarelli’s elliptic regularity theory [12] to rescaled 
variants of (2) in order to obtain a bound on D2u. The main difficulty lies in verifying an average Ln decay of the 
right-hand side in question. However, one may exploit that u ∈ C1,α(B1), D2u is bounded in B1\�, and the BMO 
estimates in [10] to prove that locally around a free boundary point, the coincidence set B1\� decays fast enough to 
ensure the Ln decay. Our assumptions on F involve conditions which enable us to utilize standard tools such as the 
maximum principle and Evans–Krylov theorem.

Moreover, once we establish that u ∈ C1,1 in B1/2, the corresponding regularity theory for the free boundary fol-
lows in a standard way through the classification of blow-up solutions and is carried out in §3. Indeed, non-degeneracy 
holds if f is positive on B1 and {|∇u| �= 0} ⊂ �. Furthermore, blow-up solutions around thick free boundary points 
are half-space solutions, and this fact combines with a directional monotonicity result to yield C1 regularity of the 
free boundary, see Theorem 15 for a precise statement.

Finally, we generalize the above-mentioned results to the parabolic setting (see also [13]) in §4 by considering the 
free boundary problem{H(u(X),X) = f (X) a.e. in Q1 ∩ �,

|D2u| ≤ K a.e. in Q1\�,

where X = (x, t) ∈ R
n ×R, H(u(X), X) := F(D2u(X), X) − ∂tu(X), Q1 is the parabolic cylinder B1(0) × (−1, 0), 

� ⊂ Q1 is some open set, and K > 0.
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