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Abstract

In this article, we develop the local Cauchy theory for the gravity water waves system, for rough initial data which do not decay 
at infinity. We work in the context of L2-based uniformly local Sobolev spaces introduced by Kato [22]. We prove a classical 
well-posedness result (without loss of derivatives). Our result implies also a local well-posedness result in Hölder spaces (with loss 
of d/2 derivatives). As an illustration, we solve a question raised by Boussinesq in [9] on the water waves problem in a canal. We 
take benefit of an elementary observation to show that the strategy suggested in [9] does indeed apply to this setting.
© 2014 Elsevier Masson SAS. All rights reserved.
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1. Introduction

We are interested in this paper in the free boundary problem describing the motion of an incompressible, irrotational 
fluid flow moving under the force of gravitation, without surface tension, in case where the initial data are neither 
localized nor periodic. There are indeed two cases where the mathematical analysis is rather well understood: firstly 
for periodic initial data (in the classical Sobolev spaces Hs(Td)) and secondly when they are decaying to zero at 
infinity (for instance for data in Hs(Rd) with s large enough). With regards to the analysis of the Cauchy problem, 
we refer to the recent papers of Lannes [25], Wu [31,32] and Germain, Masmoudi and Shatah [19]. We also refer to 
the introduction of [2] or [7,10,12,23,26,30,33] for more references. However, one can think to the moving surface of 
a lake or a canal where the waves are neither periodic nor decaying to zero (see also [16]).

A most natural strategy would be to solve the Cauchy problem in the classical Hölder spaces Wk,∞(Rd). How-
ever even the linearized system at the origin (the fluid at rest) is ill-posed in these spaces (see Remark 2.4 below), 
and this strategy leads consequently to loss of derivatives. Having this loss of derivatives in mind, the other natural 
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approach is to work in the framework of L2 based uniformly local Sobolev spaces, denoted by Hs
ul(R

d). These spaces 
were introduced by Kato (see [22]) in the analysis of hyperbolic systems. Notice however, that compared to general 
hyperbolic systems, the water waves system appears to be non-local, which induces new difficulties. This framework 
appears to be quite natural in our context. Indeed, the uniformly local Sobolev spaces Hs

ul(R
d) contain, in particular, 

the usual Sobolev spaces Hs(Rd), the periodic Sobolev spaces Hs(Td) (spaces of periodic functions on Rd ), the sum 
Hs(Rd) +Hs(Td) and also the Hölder spaces Ws,∞(Rd) (and as a by-product of our analysis, we get well-posedness 
in Hölder spaces, with a loss of derivatives).

The aim of this paper is precisely to prove that the water waves system is locally (in time) well posed in the 
framework of uniformly local Sobolev spaces. Moreover, following our previous paper [2], the data for which we 
solve the Cauchy problem are allowed to be quite rough. Indeed we shall assume, for instance, that the initial free 

surface is the graph of a function which belongs to the space H
s+ 1

2
ul (Rd) for s > 1 + d

2 . In particular, in terms of 

Sobolev embedding, the initial free surface is merely W
3
2 ,∞(Rd) thus may have unbounded curvature. On the other 

hand this threshold should be compared with the scaling of the problem. Indeed it is known that the water wave 
system has a scaling invariance for which the critical space for the initial free surface is the space Ḣ 1+ d

2 (Rd) (or 
W 1,∞(Rd)). This shows that we solve here the Cauchy problem for data 1

2 above the scaling. (Notice that in [3] we 
prove well-posedness, in the classical Sobolev spaces, 1

2 − 1
12 above the scaling when d ≥ 2 and 1

2 − 1
24 when d = 1.)

As an illustration of the relevance of this low regularity Cauchy theory in the context of local spaces, we solve 
a question raised by Boussinesq in 1910 [9] on the water waves problem in a canal. In [9], Boussinesq suggested 
to reduce the water-waves system in a canal to the same system on R3 with periodic conditions with respect to one 
variable, by a simple reflection/periodization procedure (with respect to the normal variable to the boundary of the 
canal). However, this idea remained inapplicable for the simple reason that the even extension of a smooth function 
on the half line is in general merely Lipschitz continuous (due to the singularity at the origin). As a consequence, even 
if one starts with a smooth initial domain, the reflected/periodized domain will only be Lipschitz continuous. Here, 
we are able to take benefit of an elementary (though seemingly previously unnoticed) observation which shows that 
actually, as soon as we are looking for reasonably smooth solutions, the angle between the free surface and the vertical 
boundary of the canal is a right angle. Consequently, the reflected/periodized domain enjoys additional smoothness 
(namely up to C3), which is enough to apply our rough data Cauchy theory and to show that the strategy suggested 
in [9] does indeed apply. This appears to be the first result on Cauchy theory for the water-wave system in a domain 
with boundary.

The present paper relies on the strategies developed in our previous paper [2] and we follow the same scheme of 
proof. In Section 7, we develop the machinery of para-differential calculus in the framework of uniformly local spaces 
that we need later. We think that this section could be useful for further studies in this framework. In Section 3 we prove 
that the Dirichlet–Neumann operator is well defined in this framework (notice that this fact is not straightforward, 
see [18,15] for related works), and we give a precise description (including sharp elliptic estimates in very rough 
domains) on these spaces. In Section 4, we symmetrize the system and prove a priori estimates. In Section 5, we 
prove contraction estimates and well posedness. In Section 6, we give the application to the canal (and swimming 
pools). Finally, in Appendix A, we prove that in the context of Hölder spaces, the water-waves system linearized on 
the trivial solution (rest) is ill posed.

2. The problem and the result

In this paper we shall denote by t ∈ R the time variable and by x ∈ Rd (where d ≥ 1), y ∈ R, the horizontal and 
vertical space variables. We work in a fluid domain with free boundary and fixed bottom of the form

Ω = {
(t, x, y) ∈ [0, T ] × Rd × R : (x, y) ∈Ω(t)

}
where

Ω(t)= {
(x, y) ∈ Rd × R : η∗(x) < y < η(t, x)

}
.

Here the free surface is described by η, an unknown of the problem, and the bottom by a given function η∗. We shall 
only assume that η∗ is bounded and continuous. We assume that the bottom is the graph of a function for the sake 
of simplicity: our analysis applies whenever one has the Poincaré inequality given by Lemma 3.1 below. In the case 
without bottom, the Dirichlet Neumann operator in the simplest case of a flat interface (η= 0) is equal to |Dx |. It is 
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