

Available online at www.sciencedirect.com

Ann. I. H. Poincaré - AN 30 (2013) 1069-1096

www.elsevier.com/locate/anihpc

Pointwise bounds and blow-up for nonlinear polyharmonic inequalities

Steven D. Taliaferro*

Mathematics Department, Texas A&M University, College Station, TX 77843-3368, United States

Received 1 June 2012; accepted 4 December 2012

Available online 21 January 2013

Abstract

We obtain results for the following question where $m \ge 1$ and $n \ge 2$ are integers.

Question. For which continuous functions $f:[0,\infty) \to [0,\infty)$ does there exist a continuous function $\varphi:(0,1) \to (0,\infty)$ such that every C^{2m} nonnegative solution u(x) of

 $0 \leq -\Delta^m u \leq f(u)$ in $B_2(0) \setminus \{0\} \subset \mathbb{R}^n$

satisfies

 $u(x) = O(\varphi(|x|))$ as $x \to 0$

and what is the optimal such φ when one exists?

© 2013 Elsevier Masson SAS. All rights reserved.

Résumé

Nous obtenons des résultats pour la question suivante, avec $m \ge 1$ et $n \ge 2$ entiers.

Question. Pour quelles fonctions continues $f:[0,\infty) \to [0,\infty)$ existe-t-il une fonction continue $\varphi:(0,1) \to (0,\infty)$ telle que chaque solution C^{2m} non-negative u(x) de

 $0 \leq -\Delta^m u \leq f(u)$ dans $B_2(0) \setminus \{0\} \subset \mathbb{R}^n$

satisfasse à

 $u(x) = O(\varphi(|x|))$ lorsque $x \to 0$,

et quelle est la meilleure de ces fonctions φ quand elle existe ?

© 2013 Elsevier Masson SAS. All rights reserved.

MSC: 35B09; 35B33; 35B40; 35B44; 35B45; 35R45; 35J30; 35J91

^{*} Tel.: +1 979 845 7554; fax: +1 979 845 6028. *E-mail address:* stalia@math.tamu.edu.

^{0294-1449/\$ –} see front matter © 2013 Elsevier Masson SAS. All rights reserved. http://dx.doi.org/10.1016/j.anihpc.2012.12.011

Keywords: Isolated singularity; Polyharmonic; Blow-up; Pointwise bound

1. Introduction

In this paper we consider the following question where $m \ge 1$ and $n \ge 2$ are integers.

Question 1. For which continuous functions $f : [0, \infty) \to [0, \infty)$ does there exist a continuous function $\varphi : (0, 1) \to (0, \infty)$ such that every C^{2m} nonnegative solution u(x) of

$$0 \leqslant -\Delta^m u \leqslant f(u) \quad \text{in } B_2(0) \setminus \{0\} \subset \mathbb{R}^n \tag{1.1}$$

satisfies

$$u(x) = O\left(\varphi(|x|)\right) \quad \text{as } x \to 0 \tag{1.2}$$

and what is the optimal such φ when one exists?

We call a function φ with the above properties a pointwise a priori bound (as $x \to 0$) for C^{2m} nonnegative solutions u(x) of (1.1).

As we shall see, when φ in Question 1 is optimal, the estimate (1.2) can sometimes be sharpened to

$$u(x) = o(\varphi(|x|)) \text{ as } x \to 0.$$

Remark 1.1. Let

$$\Gamma(r) = \begin{cases} r^{-(n-2)}, & \text{if } n \ge 3; \\ \log \frac{5}{r}, & \text{if } n = 2. \end{cases}$$
(1.3)

Since $u(x) = \Gamma(|x|)$ is a positive solution of $-\Delta^m u = 0$ in $B_2(0) \setminus \{0\}$, and hence a positive solution of (1.1), any pointwise a priori bound φ for C^{2m} nonnegative solutions u(x) of (1.1) must be at least as large as Γ , and whenever $\varphi = \Gamma$ is such a bound it is necessarily an optimal bound.

Some of our results for Question 1 can be generalized to allow the function f in (1.1) to depend nontrivially on x and the partial derivatives of u up to order 2m - 1. (See the second paragraph after Proposition 2.1.)

We also consider the following analog of Question 1 when the singularity is at ∞ instead of at the origin.

Question 2. For which continuous functions $f:[0,\infty) \to [0,\infty)$ does there exist a continuous function $\varphi:(1,\infty) \to (0,\infty)$ such that every C^{2m} nonnegative solution v(y) of

$$0 \leqslant -\Delta^m v \leqslant f(v) \quad \text{in } \mathbb{R}^n \setminus B_{1/2}(0) \tag{1.4}$$

satisfies

 $v(y) = O(\varphi(|y|))$ as $|y| \to \infty$

and what is the optimal such φ when one exists?

The *m*-Kelvin transform of a function $u(x), x \in \Omega \subset \mathbb{R}^n \setminus \{0\}$, is defined by

$$v(y) = |x|^{n-2m}u(x)$$
 where $x = y/|y|^2$. (1.5)

By direct computation, v(y) satisfies

$$\Delta^m v(y) = |x|^{n+2m} \Delta^m u(x). \tag{1.6}$$

See [17, p. 221] or [18, p. 660]. Using this fact and some of our results for Question 1, we will obtain results for Question 2.

Download English Version:

https://daneshyari.com/en/article/4604114

Download Persian Version:

https://daneshyari.com/article/4604114

Daneshyari.com