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Abstract

We consider the global classical solutions near the Maxwellians to the two-species Vlasov–Maxwell–Landau system in the 
whole space. It is shown that the cancelation properties between two species coupled with the electric effect yield the faster time 
decay of the electric field, which leads to our construction of global solutions.
© 2014 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The dynamics of charged dilute particles (e.g., electrons and ions) is described by the Vlasov–Maxwell–Landau 
system:

∂tF+ + v · ∇xF+ + (E + v × B) · ∇vF+ = Q(F+,F+) + Q(F−,F+),

∂tF− + v · ∇xF− − (E + v × B) · ∇vF− = Q(F+,F−) + Q(F−,F−),

F±(0, x, v) = F0,±(x, v). (1.1)

Here F±(t, x, v) ≥ 0 are the number density functions for the ions (+) and electrons (−) respectively, at time t ≥ 0, 
position x = (x1, x2, x3) ∈ R

3 and velocity v = (v1, v2, v3) ∈ R
3. The collision between charged particles is given by 

the Landau (Fokker–Planck) operator:

Q(G1,G2)(v) = ∇v ·
∫
R3

Φ
(
v − v′)(G1

(
v′)∇vG2(v) − G2(v)∇v′G1

(
v′))dv′, (1.2)
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where

Φ(v) = 1

|v|
(

I − v ⊗ v

|v|2
)

. (1.3)

The self-consistent electromagnetic field (E(t, x), B(t, x)) in (1.1) is coupled with F±(t, x, v) through the Maxwell 
system

∂tE − ∇x × B = −
∫
R3

v(F+ − F−) dv, ∇x · E =
∫
R3

(F+ − F−) dv,

∂tB + ∇x × E = 0, ∇x · B = 0,

E(0, x) = E0(x), B(0, x) = B0(x). (1.4)

It turns out that all the physical constants will not create essential mathematical difficulties along our analysis, for 
notational simplicity, we have normalized all constants in the Vlasov–Maxwell–Landau system to be one. Accord-
ingly, we normalize the global Maxwellian as

μ(v) ≡ μ+(v) = μ−(v) = e−|v|2 . (1.5)

We define the standard perturbation f±(t, x, v) to μ as

F± = μ + √
μf±. (1.6)

Letting f (t, x, v) = (
f+(t,x,v)
f−(t,x,v)

)
, the Vlasov–Maxwell–Landau system for the perturbation now takes the form{

∂t + v · ∇x + q0(E + v × B) · ∇v

}
f − 2E · v√

μq1 + Lf = Γ (f,f ) + q0E · vf,

∂tE − ∇x × B = −
∫
R3

v
√

μ(f+ − f−) dv, ∇x · E =
∫
R3

√
μ(f+ − f−) dv,

∂tB + ∇x × E = 0, ∇x · B = 0, (1.7)

for the matrix q0 = diag(1, −1) and the vector q1 = ( 1
−1

)
. For g = (

g1
g2

)
, the linearized collision operator Lg in (1.7) is 

given by the vector

Lg ≡
(

L+g

L−g

)
≡ −

⎛⎝ 2√
μ
Q(μ,

√
μg1) + 1√

μ
Q(

√
μ(g1 + g2),μ)

2√
μ
Q(μ,

√
μg2) + 1√

μ
Q(

√
μ(g1 + g2),μ)

⎞⎠ . (1.8)

For g = (
g1
g2

)
and h = (

h1
h2

)
, the nonlinear collision operator Γ (g, h) in (1.7) is given by the vector

Γ (g,h) ≡
(

Γ+(g,h)

Γ−(g,h)

)
≡
⎛⎝ 1√

μ
Q(

√
μ(g1 + g2),

√
μh1)

1√
μ
Q(

√
μ(g1 + g2),

√
μh2)

⎞⎠ . (1.9)

For the Landau operator (1.2), we define

σ ij (v) = Φij ∗ μ =
∫
R3

Φij
(
v − v′)μ(v′)dv′. (1.10)

We denote | · |2 to be the L2(R3
v) norm, and we define L2

σ (R3
v) to be the space with norm

|f |2σ =
∫
R3

[
σ ij ∂if ∂jf + σ ij vivjf

2]dv. (1.11)

From Lemma 3 in [9], we have

C−1|f |σ ≤ ∣∣〈v〉− 1
2 f
∣∣
2 +

∣∣∣∣〈v〉− 3
2 ∇vf · v

|v|
∣∣∣∣
2
+
∣∣∣∣〈v〉− 1

2 ∇vf × v

|v|
∣∣∣∣
2
≤ C|f |σ (1.12)
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