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Abstract

We consider a nonlinear third order dispersive equation which models the motion of a vortex filament immersed in an incom-
pressible and inviscid fluid occupying the three dimensional half space. We prove the unique solvability of initial-boundary value
problems as an attempt to analyze the motion of a tornado.
© 2013 Elsevier Masson SAS. All rights reserved.

Résumé

On considere une équation non linéaire dispersive de troisieme ordre qui modélise le mouvement d’un filament tourbillonnaire
immergé dans un fluide incompressible et non visqueux occupant le demi-espace en trois dimensions. Nous prouvons la solvabilité
des problemes aux limites comme une tentative pour analyser le mouvement d’une tornade.
© 2013 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In this paper, we prove the unique solvability locally in time of the following initial-boundary value problems. For
a <0,

3

Xt =X5 X Xgs +a{xsss+§xsx X(xsxxss)}a s>0,1>0,
1.1
x(s,0) = xo(s), 5> 0, (D
x5(0,1) =0, t>0.
For o > 0,

3
X;=Xg X X55 +0 xm—i—ix”x(xsxx”) , §>0,1t>0,
x(s,0) =x0(s), s >0, (1.2)
xs(ovt):e?)v t>07
x55(0,) =0, t>0.
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Here, x(s,t) = (x'(s, 1), x2(s, 1), x3(s, 1)) is the position vector of the vortex filament parameterized by its arc
length s at time 7, x is the exterior product in the three dimensional Euclidean space, « is a non-zero constant
that describes the magnitude of the effect of axial flow, e3 = (0, 0, 1), and subscripts denote derivatives with their
respective variables. Later in this paper, we will also use d; and 9; to denote partial derivatives as well. We will refer
to the equation in (1.1) and (1.2) as the vortex filament equation. We note here that the number of boundary conditions
imposed changes depending on the sign of «. This is because the number of characteristic roots with a negative real
part of the linearized equation, x; = ax s, changes depending on the sign of «.

Our motivation for considering (1.1) and (1.2) comes from analyzing the motion of a tornado. This paper is our
humble attempt to model the motion of a tornado. While it is obvious that a vortex filament is not the same as a tornado
and such modeling is questionable, many aspects of tornadoes are still unknown and we hope that our research can
serve as a small step towards the complete analysis of the motion of a tornado. The boundary conditions x(0, ) = e3
and x(0, t) = 0 force the filament to be perpendicular to the ground and be straight near the ground respectively.
In problem (1.2), where both boundary conditions are imposed, it can be proved that if the end point of the initial
vortex filament is on the ground, than the end point will stay on the ground, just as a tornado would move after it is
formed.

To this end, in an earlier paper [ 1], the authors proved the global solvability of an initial-boundary value problem
for the vortex filament equation with « = 0, which is called the Localized Induction Equation (LIE). The LIE is
an equation modeling the motion of a vortex filament without axial flow and was first proposed by Da Rios [2] in
1906 and was rediscovered by Arms and Hama [3] in 1965. Many mathematical studies have been done on the LIE
since then. Nishiyama and Tani [4] proved the global solvability of the Cauchy problem. Koiso [5] also considered
the Cauchy problem in a more geometrically general setting, but instead of the LIE he transformed the equation
into a nonlinear Schrodinger equation via the Hasimoto transformation and proved the global solvability. In more
recent years, Gutiérrez, Rivas, and Vega [6] constructed a one-parameter family of self-similar solutions of the LIE
which form a corner in finite time. They further analyze the behavior of the solutions as the parameter is changed
and conclude that the parameter affects the angle and shape of the final corner that is formed. Following their results,
Banica and Vega [7.8] showed some asymptotic properties and the stability of the self-similar solutions obtained
in [6]. Gutiérrez and Vega [9] proved the stability of self-similar solutions different from the ones treated in [7,8].

When axial flow is present (i.e. « is non-zero), many results are known for the Cauchy problem where the filament
extends to spacial infinity or the filament is closed. For example, in Nishiyama and Tani [4], they proved the unique
solvability globally in time in Sobolev spaces. Onodera [10,11] proved the unique solvability for a geometrically
generalized equation. Segata [12] proved the unique solvability and showed the asymptotic behavior in time of the
solution to the Hirota equation, given by

. 1 .
19r = qxx + §|t]|261 + I(X(qux + |Q|2CIX)1 (1.3)

which can be obtained by applying the generalized Hasimoto transformation to the vortex filament equation. Since
there are many results regarding the Cauchy problem for the Hirota equation and other Schrodinger type equations, it
may feel more natural to see if the available theories from these results can be utilized to solve the initial-boundary
value problem for (1.3), instead of considering (1.1) and (1.2) directly. Admittedly, problem (1.1) and (1.2) can be
transformed into an initial-boundary value problem for the Hirota equation. But, in light of the possibility that a new
boundary condition may be considered for the vortex filament equation in the future, we thought that it would be
helpful to develop the analysis of the vortex filament equation itself because the Hasimoto transformation may not be
applicable depending on the new boundary condition. For example, (1.1) and (1.2) model a vortex filament moving in
the three dimensional half space, but if we consider a boundary that is not flat, it is nontrivial as to if we can apply the
Hasimoto transformation or not, so we decided to work with the vortex filament equation directly.

For convenience, we introduce a new variable v(s, 7) := x(s, ) and rewrite the problems in terms of v. Setting
vo(s) := x5 (s), we have for o <0,

3 3
V=V X Vg +a{vsss + Ev” X (v X vg) + zvs X (v X v_“)}, s>0,1>0,

v(s,0) = vg(s), s >0, (14

v,(0,1) =0, t>0.
For o > 0,
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