

Available online at www.sciencedirect.com

Ann. I. H. Poincaré - AN 32 (2015) 201-224

www.elsevier.com/locate/anihpc

Compactness and bubble analysis for 1/2-harmonic maps

Francesca Da Lio

Department of Mathematics, ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland Received 10 October 2012; received in revised form 30 September 2013; accepted 12 November 2013 Available online 1 December 2013

Abstract

In this paper we study compactness and quantization properties of sequences of 1/2-harmonic maps $u_k : \mathbb{R} \to S^{m-1}$ such that $\|u_k\|_{\dot{H}^{1/2}(\mathbb{R},S^{m-1})} \leq C$. More precisely we show that there exist a weak 1/2-harmonic map $u_{\infty} : \mathbb{R} \to S^{m-1}$, a finite and possible empty set $\{a_1, \ldots, a_\ell\} \subset \mathbb{R}$ such that up to subsequences

$$\left|(-\Delta)^{1/4}u_k\right|^2 dx \rightharpoonup \left|(-\Delta)^{1/4}u_\infty\right|^2 dx + \sum_{i=1}^{\ell} \lambda_i \delta_{a_i}, \quad \text{in Radon measure,}$$

as $k \to +\infty$, with $\lambda_i \ge 0$.

The convergence of u_k to u_∞ is strong in $\dot{W}_{loc}^{1/2, p}(\mathbb{R} \setminus \{a_1, \ldots, a_\ell\})$, for every $p \ge 1$. We quantify the loss of energy in the weak convergence and we show that in the case of non-constant 1/2-harmonic maps with values in S^1 one has $\lambda_i = 2\pi n_i$, with n_i a positive integer.

© 2013 Elsevier Masson SAS. All rights reserved.

MSC: 58E20; 35J20; 35B65; 35J60; 35S99

Keywords: Fractional harmonic maps; Nonlinear elliptic PDE's; Regularity of solutions; Commutator estimates

1. Introduction

In the paper [9] Rivière and the author started the investigation of the following 1-dimensional quadratic Lagrangian

$$L(u) = \int_{\mathbb{R}} \left| (-\Delta)^{1/4} u(x) \right|^2 dx,$$
(1)

where $u : \mathbb{R} \to \mathcal{N}$, \mathcal{N} is a smooth *k*-dimensional sub-manifold of \mathbb{R}^m which is at least C^2 , compact and without boundary. We observe that (1) is a simple model of Lagrangian which is invariant under the trace of conformal maps that keep invariant the half-space \mathbb{R}^2_+ : the Möbius group.

0294-1449/\$ – see front matter © 2013 Elsevier Masson SAS. All rights reserved. http://dx.doi.org/10.1016/j.anihpc.2013.11.003 Precisely let $\phi : \mathbb{R}^2_+ \to \mathbb{R}^2_+$ in $W^{1,2}(\mathbb{R}^2_+, \mathbb{R}^2_+)$ be a conformal map of degree 1, i.e. it satisfies

$$\begin{cases} \left| \frac{\partial \phi}{\partial x} \right| = \left| \frac{\partial \phi}{\partial y} \right|, \\ \left\langle \frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y} \right\rangle = 0, \\ \det \nabla \phi \ge 0 \quad \text{and} \quad \nabla \phi \ne 0. \end{cases}$$
(2)

Here $\langle \cdot, \cdot \rangle$ denotes the standard Euclidean inner product in \mathbb{R}^m .

We denote by $\tilde{\phi}$ the restriction of ϕ to \mathbb{R} . Then we have $L(u \circ \tilde{\phi}) = L(u)$. Moreover L(u) in (1) coincides with the semi-norm $||u||^2_{\dot{H}^{1/2}(\mathbb{R})}$ and the following identity holds

$$\int_{\mathbb{R}} \left| (-\Delta)^{1/4} u(x) \right|^2 dx = \inf\left\{ \int_{\mathbb{R}^2_+} |\nabla \tilde{u}|^2 dx \colon \tilde{u} \in W^{1,2}(\mathbb{R}^2, \mathbb{R}^m), \text{ trace } \tilde{u} = u \right\}.$$
(3)

The Lagrangian L extends to maps u in the following function space

$$\dot{H}^{1/2}(\mathbb{R},\mathcal{N}) = \left\{ u \in \dot{H}^{1/2}(\mathbb{R},\mathbb{R}^m) \colon u(x) \in \mathcal{N}, \text{ a.e.} \right\}$$

The operator $(-\Delta)^{1/4}$ on \mathbb{R} is defined by means of the Fourier transform as follows

$$(-\Delta)^{1/4}u = |\xi|^{1/2}\hat{u}$$

(given a function f, \hat{f} denotes the Fourier transform of f). We denote by π_N the orthogonal projection from \mathbb{R}^m onto \mathcal{N} which happens to be a C^{ℓ} map in a sufficiently small neighborhood of \mathcal{N} if \mathcal{N} is assumed to be $C^{\ell+1}$. We now introduce the notion of 1/2-harmonic map into a manifold.

Definition 1.1. A map $u \in \dot{H}^{1/2}(\mathbb{R}, \mathcal{N})$ is called a weak 1/2-harmonic map into \mathcal{N} if for any $\phi \in \dot{H}^{1/2}(\mathbb{R}, \mathbb{R}^m) \cap$ $L^{\infty}(\mathbb{R},\mathbb{R}^m)$ there holds

$$\frac{d}{dt}L\big(\pi_{\mathcal{N}}(u+t\phi)\big)_{|_{t=0}}=0.$$

In short we say that a weak 1/2-harmonic map is a critical point of L in $\dot{H}^{1/2}(\mathbb{R}, \mathcal{N})$ for perturbations in the target.

We next give some geometric motivations related to the study of the problem (1).

First of all variational problems of the form (1) appear as a simplified model of renormalization area in hyperbolic spaces, see for instance [2]. There are also some geometric connections which are being investigated in the paper [11] between 1/2-harmonic maps and the so-called free boundary sub-manifolds and optimization problems of eigenvalues. With this regards we refer the reader also to the papers [14,15]. Finally 1/2-harmonic maps into the circle S^1 might appear for instance in the asymptotics of equations in phase-field theory for fractional reaction-diffusion such as

$$\epsilon^2 (-\Delta)^{1/2} u + u (1 - |u|^2) = 0,$$

where *u* is a complex-valued "wave function".

In this paper we consider the case $\mathcal{N} = \mathcal{S}^{m-1}$. It can be shown (see [9]) that every weak 1/2-harmonic map satisfies the following Euler-Lagrange equation

$$(-\Delta)^{1/2} u \wedge u = 0 \quad \text{in } \mathcal{D}'(\mathbb{R}). \tag{4}$$

One of the main achievements of the paper [9] is the rewriting of Eq. (4) in a more "tractable" way in order to be able to investigate regularity and compactness property of weak 1/2-harmonic maps. Precisely in [9] the following two results have been proved:

Download English Version:

https://daneshyari.com/en/article/4604238

Download Persian Version:

https://daneshyari.com/article/4604238

Daneshyari.com