
Preference-oriented real-time scheduling and its application
in fault-tolerant systems

Yifeng Guo a, Hang Su a, Dakai Zhu a,⇑, Hakan Aydin b

a Department of Computer Science, The University of Texas at San Antonio, San Antonio, TX 78249, USA
b Department of Computer Science, George Mason University, Fairfax, VA 22030, USA

a r t i c l e i n f o

Article history:
Received 26 August 2014
Received in revised form 14 November 2014
Accepted 21 December 2014
Available online 3 January 2015

Keywords:
Periodic real-time tasks
Preference-oriented execution
Scheduling algorithms
Fault-tolerant systems

a b s t r a c t

In this paper, we consider a set of real-time periodic tasks where some tasks are preferably executed as
soon as possible (ASAP) and others as late as possible (ALAP) while still meeting their deadlines. After intro-
ducing the idea of preference-oriented (PO) execution, we formally define the concept of PO-optimality. For
fully-loaded systems (with 100% utilization), we first propose a PO-optimal scheduler, namely ASAP-
Ensured Earliest Deadline (SEED), by focusing on ASAP tasks where the optimality of ALAP tasks’ preference
is achieved implicitly due to the harmonicity of the PO-optimal schedules for such systems. Then, for
under-utilized systems (with less than 100% utilization), we show the discrepancies between different
PO-optimal schedules. By extending SEED, we propose a generalized Preference-Oriented Earliest Deadline
(POED) scheduler that can obtain a PO-optimal schedule for any schedulable task set. The application of
the POED scheduler in a dual-processor fault-tolerant system is further illustrated. We evaluate the
proposed PO-optimal schedulers through extensive simulations. The results show that, comparing to that
of the well-known EDF scheduler, the scheduling overheads of SEED and POED are higher (but still man-
ageable) due to the additional consideration of tasks’ preferences. However, SEED and POED can achieve
the preference-oriented execution objectives in a more successful way than EDF.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The real-time scheduling theory has been studied for decades
and many well-known scheduling algorithms have been proposed
for various task and system models. For instance, for a set of peri-
odic tasks running on a uniprocessor system, the rate monotonic
(RM) and earliest-deadline-first (EDF) scheduling policies are shown
to be optimal for static and dynamic priority based preemptive
scheduling algorithms, respectively [16]. With the main objective
of meeting all the timing constraints, most existing scheduling
algorithms (e.g., EDF and RM) prioritize and schedule tasks based
only on their timing parameters (e.g., deadlines and periods).
Moreover, these algorithms usually adopt the work conservation
strategy (that is, the processor will not idle if there are tasks ready
for execution) and execute tasks as soon as possible (ASAP).

However, there are occasions where it can be beneficial to
execute tasks as late as possible (ALAP). For example, to provide bet-
ter response time for soft aperiodic tasks, the earliest deadline latest
(EDL) algorithm has been developed to execute periodic tasks at
their latest times provided that all the deadlines will still be met

[8]. By delaying the execution of all periodic tasks as much as pos-
sible, EDL has been shown to be optimal where no task will miss its
deadline if the system utilization is no more than one [8]. By its
very nature, EDL is a non-work-conserving scheduling algorithm:
the processor may remain idle even though there are ready tasks.
With the same objective, dual-priority (DP) was developed based
on the phase delay technique [1] for fixed-priority rate-monotonic
scheduling [9]. Here, periodic tasks with hard deadlines start at
lower priority levels and, to ensure that there is no deadline miss,
their priorities are promoted to higher levels after a fixed time off-
set. Soft aperiodic tasks are executed at the medium-priority level
to improve their responsiveness.

Such selectively delayed execution of tasks can be useful for
fault-tolerant systems as well. For example, to minimize the over-
lap between the primary and backup tasks on different processors
(and thus save energy), the execution of backup tasks should be
delayed as much as possible [4,12,22]. In fact, EDL has been
exploited to schedule periodic backup tasks on the secondary
processor to reduce the overlapped execution with their primary
tasks for better energy savings [14].

However, when backup tasks (whose primary tasks are on
different processors) are scheduled with another set of primary
periodic tasks in a mixed manner on one processor [4,12,22], the

http://dx.doi.org/10.1016/j.sysarc.2014.12.001
1383-7621/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +1 210 458 7453; fax: +1 210 458 4437.
E-mail address: dakai.zhu@utsa.edu (D. Zhu).

Journal of Systems Architecture 61 (2015) 127–139

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/ locate /sysarc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2014.12.001&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2014.12.001
mailto:dakai.zhu@utsa.edu
http://dx.doi.org/10.1016/j.sysarc.2014.12.001
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc


execution of backup tasks needs to be postponed as much as pos-
sible while the primary tasks should be executed as soon as possi-
ble for better performance. Note that, the well-known scheduling
algorithms generally treat all periodic tasks uniformly. They nor-
mally schedule tasks solely based on their timing parameters
either at their earliest (e.g., with EDF and RM) or latest times
(e.g., with EDL and DP). Hence, neither of them can effectively han-
dle tasks with different preferences.

Intuitively, one may consider adopting the hierarchical schedul-
ing approach [18,19] to solve such problems, where tasks with the
same preference form a task group and the high-level scheduler
would determine only how to schedule different task groups. How-
ever, the existing hierarchical scheduling frameworks consider
mostly work-conserving algorithms (such as EDF and RM) at both
parent and child scheduling components. It is not obvious how
such framework can be generalized to non-work-conserving algo-
rithms (such as EDL and DP) in order to comply with tasks’ differ-
ent execution preferences while guaranteeing their timing
constraints.

Therefore, we believe that there is a strong incentive to develop
effective uniprocessor scheduling algorithms for periodic tasks
with different execution preferences (e.g., ASAP and ALAP). In addi-
tion to fault-tolerant systems, such algorithms can also be applied
in mixed-criticality task systems [2], where high-criticality tasks
can be given the preference of running early. This makes it possible
to discover large amount of slack at earlier time, which could be fur-
ther exploited to provide better service to low-criticality tasks [20].

However, to the best of our knowledge, such scheduling algo-
rithms have not been well studied in the literature yet. In this
work, we consider periodic tasks running on a uniprocessor system
where some tasks are preferably executed ASAP while others ALAP.
We study effective scheduling algorithms and illustrate their appli-
cations. Specifically, the main contributions of this paper are sum-
marized as follows:

� The concept of preference-oriented (PO) execution is introduced
for tasks with ASAP and ALAP preferences. Two types of PO-opti-
mal schedules are defined, where their harmonicity and discrep-
ancies for fully-loaded and under-utilized systems, respectively,
are analyzed.
� An optimal ASAP-Ensured Earliest Deadline (SEED) scheduling

algorithm, which takes the preference of ASAP tasks into con-
sideration when making scheduling decisions, is proposed for
fully-loaded systems.
� A generalized Preference-Oriented Earliest Deadline (POED)

scheduler is also studied by extending SEED and explicitly man-
aging system idle time, which can obtain a PO-optimal schedule
for any schedulable task set.
� The application of the POED scheduler in dual-processor fault-

tolerant systems to reduce execution overhead and thus
improve system efficiency is further illustrated.
� Finally, we evaluate the proposed schedulers through extensive

simulations. The results show that, with manageable scheduling
overheads (less than 35 microseconds per invocation for up to
100 tasks), the SEED and POED schedulers can obtain superior
performance in terms of achieving tasks’ preference objectives
when comparing to that of the EDF scheduler. Moreover, the
execution overhead in dual-processor fault-tolerant systems
can be significantly reduced under POED when compared to
the state-of-the-art standby-sparing scheme.

The remainder of this paper is organized as follows. Section 2
reviews closely related work. Section 3 presents system models
and some notations. In Section 4, we formally define and investi-
gate the optimality of different preference-oriented schedules.
The SEED scheduling algorithm is proposed and analyzed in

Section 5. The generalized POED scheduler is addressed in Section
6 and Section 7 illustrates the application of POED in fault-tolerant
systems. Section 8 presents the evaluation results and Section 9
concludes the paper.

2. Closely related work

In this section, we review closely related work on scheduling
algorithms for periodic real-time tasks running on uniprocessor sys-
tems and techniques to reduce execution overhead in fault-tolerant
systems. The earliest-deadline-first (EDF) and rate monotonic (RM)
scheduling algorithms, which are well-known optimal schedulers
for periodic tasks running on a uniprocessor system, have been
studied in [16]. Here, EDF is a dynamic-priority scheduler that pri-
oritizes and schedules tasks based on the deadlines of their current
task instances. In comparison, RM is a fixed-priority scheduler that
prioritizes tasks according to their periods where tasks with
smaller periods have higher priorities. With the objective of
meeting all tasks’ deadlines, both EDF and RM adopt the work
conservation strategy, which do not let the processor idle if there
are ready tasks, and execute tasks as soon as possible.

For systems that have mixed workload with hard real-time
periodic tasks and soft real-time aperiodic tasks, to provide better
response time for soft aperiodic tasks, the earliest deadline latest
(EDL) algorithm has been developed to execute periodic tasks at
their latest times [8]. To ensure that there is no deadline miss,
EDL considers all instances of periodic tasks within the least com-
mon multiple (LCM) of their periods and generate an offline static
schedule. For fixed-priority rate-monotonic scheduling, the phase
delay technique was investigated where the arrival of tasks can
be delayed for a certain offset without missing any deadline [1].
Based on this technique, the dual-priority (DP) scheme has been
developed for rate-monotonic scheduling to improve the respon-
siveness of soft real-time aperiodic tasks [9].

The idea of delaying the execution of selected tasks has also
been exploited in fault-tolerant systems [4,22]. As a common and
effective fault-tolerance technique, the primary/backup (PB)
approach normally schedules multiple copies (i.e., one as primary
and others as backup) of a real-time task on different processors
to tolerate a certain number of faults [17]. However, this technique
can potentially consume significant system resources (e.g. CPU
time and power). Thus, the backup copies are normally canceled
as soon as their corresponding primary tasks complete successfully
[5]. Hence, to reduce the execution overhead, backup tasks should
be scheduled at their latest times to minimize the overlap with
their corresponding primary tasks that run on different processors
[4,22].

By dedicating one processor as the spare for backup tasks, Ejlali
et al. studied a novel Standby-Sparing (SS) technique for dependent
and aperiodic real-time tasks running on dual-processor systems
with the goal of saving system energy consumption while
tolerating a single permanent fault [10]. Based on the same idea
of separating tasks on different processors, Haque et al. extended
the standby-sparing technique to a more practical periodic task
model based on the earliest deadline scheduling [14]. Here, to
reduce the overlap between primary and backup copies of the
same task, primary and backup tasks are scheduled according to
EDF and EDL, respectively, on their dedicated processors [14].
Following this line of research, the fixed-priority (rate-monotonic
priority) based standby-sparing scheme was studied in [15]. The
generalized standby-sparing schemes for systems with more than
two processors were investigated in [13].

Instead of dedicating a processor as the spare, it can be more
efficient to allocate primary and backup copies of tasks in a mixed
manner on both processors [12]. In this case, on each processor, the

128 Y. Guo et al. / Journal of Systems Architecture 61 (2015) 127–139



Download English Version:

https://daneshyari.com/en/article/460429

Download Persian Version:

https://daneshyari.com/article/460429

Daneshyari.com

https://daneshyari.com/en/article/460429
https://daneshyari.com/article/460429
https://daneshyari.com

