Journal of Systems Architecture 61 (2015) 12-27

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Data loss recovery for power failure in flash memory storage systems

@ CrossMark

Sanghyuk Jung, Yong Ho Song *

Department of Electronics and Computer Engineering, Hanyang University, Seoul 133-791, Republic of Korea

ARTICLE INFO ABSTRACT

Article history:

Received 2 May 2014

Received in revised form 12 September 2014
Accepted 15 November 2014

Available online 22 November 2014

Due to the rapid development of flash memory technology, NAND flash has been widely used as a storage
device in portable embedded systems, personal computers, and enterprise systems. However, flash mem-
ory is prone to performance degradation due to the long latency in flash program operations and flash
erasure operations. One common technique for hiding long program latency is to use a temporal buffer
to hold write data. Although DRAM is often used to implement the buffer because of its high performance
and low bit cost, it is volatile; thus, that the data may be lost on power failure in the storage system. As a
solution to this issue, recent operating systems frequently issue flush commands to force storage devices
to permanently move data from the buffer into the non-volatile area. However, the excessive use of flush
commands may worsen the write performance of the storage systems. In this paper, we propose two data
loss recovery techniques that require fewer write operations to flash memory. These techniques remove
unnecessary flash writes by storing storage metadata along with user data simultaneously by utilizing

Keywords:

Power failure

Power loss recovery
Storage management
Flash storage system

the spare area associated with each data page.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Recently, flash memories have become popular in many storage
systems due to various advantages such as their high performance,
light weight, and low power consumption. The storage systems
using flash memories include embedded multimedia cards (eMMCs),
secure digital memory card (SD cards), and compact flash memory
cards (CFs) for portable embedded systems, and solid state drives
(SSDs) and hybrid caches for enterprise systems [1]. However, flash
storage systems inherit many shortcomings of flash memory
devices such as the asymmetric access time between read/write
and erase operations, no support for in-place update (erase-before-
write property), and limited lifespan (program/erase cycles).

These flash storage systems often suffer from transient and fre-
quent performance degradation due to the long latency of page
program and block erasure operations: the page program operation
often takes 5-20 times longer than the page read operation.
Moreover, the performance degradation may result from merge
operations [2-7] and garbage collection operations [8-16], which
are mostly caused by updates (or overwrites, from the host system
perspective). Unless excessive merge and garbage collection

* Corresponding author at: Fusion Technology Center 1126, Hanyang University,
222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea. Tel.: +82 2
2220 4681; fax: +82 2 2220 4987.

E-mail addresses: shjung@enc.hanyang.ac.kr (S. Jung), yhsong@hanyang.ac.kr
(Y.H. Song).

http://dx.doi.org/10.1016/j.sysarc.2014.11.002
1383-7621/© 2014 Elsevier B.V. All rights reserved.

operations are avoided, the storage device is prone to significant
performance degradation since these expensive operations require
multiple calls to page programs and block erasures.

Many storage systems prevent such performance degradation
in various ways, including reducing the number of write and erase
operations or hiding the latency of these operations. The former is
often done by designing efficient storage management techniques
in flash translation layers (FTLs) [2-7]. In fact, the number of actual
write and erase operations is greatly affected by the FTL mapping
algorithm. When storing a page update, the FTL tries to allocate a
new free page in such a way that garbage collection will generate
fewer page program and block erase operations. As long as out-of-
place updates are used, the garbage collection mechanism should
also be provided in FTL to recycle dirty blocks and, therefore, has
a significant impact on system performance. Alternatively, storage
systems may use a temporal buffer [17-20] to hide long write
latency. If the buffer has enough free space, it can service the write
requests by temporarily storing the data and notify the completion
of host requests instead of waiting until the data is actually written
to the flash memory. The buffered data are then flushed to the flash
memory when no further requests arrive from the host system. If
the data are further updated before leaving the buffer, only the last
update goes to flash memory, which would also contribute to a
decrease in the number of flash writes.

Such a temporal buffer is implemented using fast volatile mem-
ories such as DRAM [21] and SRAM, and, therefore, is prone to loss
of unflushed data upon sudden power failure. In many systems,


http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2014.11.002&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2014.11.002
mailto:shjung@enc.hanyang.ac.kr
mailto:yhsong@hanyang.ac.kr
http://dx.doi.org/10.1016/j.sysarc.2014.11.002
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc

S. Jung, Y.H. Song/Journal of Systems Architecture 61 (2015) 12-27 13

these memories are also used to store frequently-accessed storage
metadata [22,23] such as FTL mapping tables. Once these metadata
are lost, the storage system may reach a state where storage recov-
ery from power loss becomes impossible.

To avoid such data loss, recent operating systems issue periodic
flush commands to underlying storage systems [24]. When the flush
command arrives, the storage system starts to move the data from
the buffer to the non-volatile memory. However, this command
cannot be issued too frequently because the storage system must
complete the flush operation before handling any further requests,
thus reducing the positive effect of the buffer and degrading the
overall system performance. For this reason, flush commands are
often generated after sufficient intervals, which make the buffered
data vulnerable to data loss due to sudden power failure. Neverthe-
less, the metadata must be safely backed up to the non-volatile
memory in order not to lose the storage data consistency; thus,
many storage devices back up the updated portion of metadata
whenever any change takes place.

Many studies on power loss recovery (PLR) schemes [25-32]
have been done to make the storage survive the unexpected event
by safely backing up the metadata. (1) One approach, In-Block
Backup, reserves a certain number of blocks in flash memory as a
metadata area and stores the modified metadata into the blocks
whenever any of them is altered. Upon a sudden power failure
event, the storage controller identifies the location of the metadata
area and uses the information stored in the area during the boot-up
process to restore the up-to-date system state. (2) Another
approach is called In-Page Backup, where the metadata associated
with each data page are also stored into its spare area. During a
recovery process, the controller reconstructs the up-to-date system
state by reading the spare area of each page. (3) Finally, hybrid
Backup uses a mixture of the two above-mentioned techniques:
it periodically stores a backup of the mapping table in the metada-
ta area and it also copies page mapping information into the spare
area of the corresponding data page.

However, these techniques may still incur high overheads to
storage systems because they require an extra flash program for
every mapping table update. In addition, they take a long time to
reconstruct metadata from the backup area, particularly in In-Page
Backup. In this paper, we propose two PLR techniques, accumula-
tion based PLR (A-PLR) and signature based PLR (S-PLR), which,
together, reduce the metadata reconstruction overhead by dispers-
ing the metadata across the different area of flash memories and
reducing the number of pages used for the backup, respectively.
The A-PLR, matched with page mapping schemes, makes an incre-
mental backup of metadata in the spare area so that, as in a set of
consecutive physical pages, the last page contains the metadata for
all the other pages. The S-PLR, used in block mapping schemes uses
the spare area of the first data page per block to save the metadata
associated with the data block. Since the page spare area is also
used to store error correction code (ECC) [33-35], this area may
not provide enough space to back up the metadata, in which case
the recovery process may need to read additional pages. The over-
head can be mitigated by overlapping the page reads over multiple
channels and ways [36-39].

Evaluations have been performed by using an analytical model.
The results show that A-PLR and S-PLR outperform the traditional
schemes (In-Block Backup, In-Page Backup, and Hybrid Backup).
The traditional schemes all suffer from the same problem: high
metadata backup overhead during system run-time and high
latency on recovery. By contrast, A-PLR and S-PLR effectively
reduced the recovery latency without a run-time mapping table
backup overhead.

The rest of this paper is organized as follows. In Section 2, we
present the background of our approaches including mapping
information consistency, traditional PLR schemes, and design

considerations of PLRs. In Section 3, we describe the related work
including previous studies for FTLs and PLRs. In Section 4, we pro-
pose two effective PLR techniques using spare areas for mapping
table storages: accumulation and signature-based PLRs. In Sec-
tion 5, we show the feasibility of using the PLR techniques for flash
storage systems through our mathematical analysis results. Finally,
in Section 6, we briefly summarize and draw conclusions from this
study.

2. Background
2.1. System metadata consistency

The relationship between the physical page location of data and
the logical page address should be maintained consistently
through mapping tables. If any data in a storage system are
unreachable using logical addresses, the host system may suffer
from the metadata inconsistency problem. There are two feasible
ways to deal with the inconsistency: a prevention-based approach,
which uses a virtually permanent power supply, and a recovery-
based approach, which provides ways to efficiently back up the
metadata and recover them whenever necessary.

Table 1 summarizes the well-known data synchronization tech-
niques of storage metadata and the effectiveness of each. Each
technique defines its own scheme in a given environment for
metadata consistency in an effort to return a more accurate and
more recent committed versions of requested data. The first col-
umn, backup cost, represents the number of pages programmed
to back up metadata into the non-volatile storage during system
run time. The second column, recovery cost, indicates the number
of flash read operations required to restore the metadata when a
system reboots after a power failure. The last column, recovery cov-
erage, shows how much data can be successfully accessed after the
power loss event.

As shown in Table 1, the prevention approaches are the best in
terms of costs and recovery coverage: the flash storage system can
be partially free from both backup and recovery overheads with
the use of a capacitor/battery or non-volatile RAM (NVRAM)
[40-42]. In addition, the prevention approaches are able to maxi-
mize the recovery coverage with small recovery overhead if the
operations such as the mapping entry allocation, mapping entry
fill-in, and page allocation are treated as an atomic unit; otherwise,
storing FTL metadata in NVRAM cannot guarantee data consistency
[43]. If a power failure happens during the write of the mapping
entry, a corrupted or wrong entry value will appear at next reboot.
Some recovery mechanisms and associated controller logics have
to be provided to handle such power crash cases.

On the other hand, the recovery approaches show worse storage
access performance than the prevention ones, but require only
software development cost without any hardware modification
(i.e., the simple hardware or controller logic still require at least
a consistent view of its mappings). The file system or DBMS in
the host system may initiate data synchronization operation to
prevent data loss in the system level [44-46]. For instance, a crash
recovery policy [47] has been proposed for log-based file systems
over flash memory without having to scan all pages. This policy
uses a mechanism that writes or updates to files in a native file sys-
tem, usually in an appending fashion on flash memory. The meta-
data of the file system could be reconstructed by scanning the
writes/updates on flash memory. When a write/update is done to
a flash-memory page, the corresponding spare area of the page is
written with log information for the data. These crash recovery
techniques, such as [47], use log structured file systems and define
flash log writes on a file system layer (not a device layer). The syn-
chronization may appear as a sequence of special writes to the



Download English Version:

https://daneshyari.com/en/article/4604 32

Download Persian Version:

https://daneshyari.com/article/460432

Daneshyari.com


https://daneshyari.com/en/article/460432
https://daneshyari.com/article/460432
https://daneshyari.com

