
Journaling deduplication with invalidation scheme for flash
storage-based smart systems q

Seung-Ho Lim a, Young-Sik Jeong b,⇑
a Department of Digital Information Engineering, Hankuk University of Foreign Studies, Republic of Korea
b Department of Multimedia Engineering, Dongguk University, Republic of Korea

a r t i c l e i n f o

Article history:
Received 11 June 2013
Received in revised form 24 February 2014
Accepted 2 April 2014
Available online 26 April 2014

Keywords:
Filesystem
Journaling
FTL
Invalidation
Smart system

a b s t r a c t

Transaction support for filesystems has become a common feature in modern operating systems where
data atomicity is achieved by writing transactions to the log region in advance. The logging mechanism is
appropriate for flash storage devices due to the inherent nature of flash memory. However, the logging
schemes inherently create multiple copies of data, leading to a decrease in the bandwidth of storage
systems. In this paper, we present a simple and efficient invalidation scheme for multiple copies of data
in a common journaling module. We identify two types of duplications, one in which there is an explicit
duplication of the journal region and original region with the same data, and the other in which there is
an implicit duplication of transaction commit operations. The invalidation of duplicated data reduces
internal write and erase operations and garbage collection overhead for flash devices, which would
otherwise increases external I/O bandwidth. Experimental results show that the overall performance
improves roughly from 5% to 35% with the invalidation scheme for journal transactions.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Recently, the capacity of NAND flash memory chips has become
large enough for them to be used as a part of the main storage
medium of electronic devices, and this size will continue to
increase quickly. Flash-based storage devices, such as Solid State
Drives (SSDs) and embedded Multi-Media Controller (eMMC)
cards, have reached the mainstream market as storage solutions.
SSDs are rapidly taking the place of traditional mechanical hard
drives since they support the same interfaces at higher layers,
and eMMC has also reached wide adoption in mobile systems.

However, there are several critical limits for flash memory. If
data is written to flash memory, write operations should be pre-
ceded by erase operations. In other words, in-place update is not
allowed in flash memory. Read and write commands are performed
in pages, whereas erase operations are performed in blocks, whose
size is much larger than that of pages. Thus, write operations
should be implemented with efficient erase operations that
perform proper garbage collection (GC) operation, which is the

process that makes regions available for writes. In most cases,
the internal flash controller and the firmware of flash storage
devices hide the limitations of the use of flash memory from the
upper layers of the storage system, so that applications dont need
to be changed. The main role of the flash controller and the
firmware is the address translation between the logical address
of the file system and the physical address of the flash memory
itself. The controller and firmware perform out-of-place updates
which in turn help to hide erase operations in the flash memory.
Address translation is based on the internal mapping table.

Despite the advantages of flash-based storage, physical limita-
tions necessitate the application of software-guided enhancement
schemes to flash-based storage systems, including buffering,
compression, exploiting parallelism, error correction, deduplica-
tion, etc. With the advent of larger and highly-accessible storage
systems, ensuring data reliability and consistency has become
one of the most important issues for modern storage systems.
Supporting transactions in file systems has become a common
feature in operating systems, where data atomicity is enabled by
writing transactions to the log region in advance, within the start
of the transaction and commit semantics. Logging is well-suited
for flash devices because of the inherent copy-on-write nature of
flash memory.

Several studies were performed attempting to reduce the over-
head of transactional operations for flash devices. However, most

http://dx.doi.org/10.1016/j.sysarc.2014.04.002
1383-7621/� 2014 Elsevier B.V. All rights reserved.

q This work was supported by Hankuk University of Foreign Studies Research
Fund of 2014.
⇑ Corresponding author. Tel.: +82 10 6372 5339.

E-mail addresses: slim@hufs.ac.kr (S.-H. Lim), ysjeong@dongguk.edu
(Y.-S. Jeong).

Journal of Systems Architecture 60 (2014) 684–692

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/locate /sysarc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2014.04.002&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2014.04.002
mailto:slim@hufs.ac.kr
mailto:ysjeong@dongguk.edu
http://dx.doi.org/10.1016/j.sysarc.2014.04.002
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc

of these previous works made use of device-internal information,
such as the FTL mapping table [11,23], or provided another API for
transactional operations [22]. These schemes could violate a soft-
ware-layered approach or could make changes in the conventional
filesystem, along with requiring much higher code complexity.

In this paper, we present a simple and efficient invalidation
scheme for journal transactions in a common journaling module.
In Linux, the common journaling module, jbd, is used for journal
transactions for the default linux filesystem Ext4 [12]. In the jour-
nal module, the filesystem changes are first written to the log
region, and then the duplications are written to the original loca-
tions. Thus, the logging schemes inherently have multiple copies
of the data, which leads to a decrease in the bandwidth of the stor-
age system. We identified that, in addition to the explicit multiple
copies (i.e., duplications of the same date in the journal region and
the original region), there are another multiple implicit copies of
data in transaction commit operations that can be easily invali-
dated without violating data consistency. Data invalidation outside
of the flash device is achieved via interface commands, such as trim
command [24], that allow an operating system to inform the flash
device which blocks of data are no longer considered in use and
can be wiped internally. The invalidation of duplicated data leads
to a reduction in write and erase operations and an increase in
garbage collection efficiency for the flash device.

The remainder of this paper is organized as follows: in Section 2,
related work is described; in Section 3, the proposed invalidation
scheme for journal transactions is explained; in Section 4, perfor-
mance evaluation results for the proposed scheme are described;
and in the last Section, the conclusion is shown.

2. Background and related work

In this section, the background of research area is first
described, which includes basics of flash storage. Then flash’s
relared work is described.

2.1. Flash storage

Generally, flash-based storage devices are composed of a chip or
array of NAND flash memory. For instance, NAND-flash based SSDs
consist of a flash controller, DRAM main memory, and dozens of
NAND flash memory chips. There are three commands that are
used specifically for NAND flash memory: read, program, and erase.
The read and program commands are related to data transfer
between the host and flash devices, and the data units consist of
pages. The erase command does not transfer data between the host
and the flash storage, and it operates in units of blocks.

When the number of free pages is insufficient to execute data
write operations, free pages should be made available by the GC
routine, the process that makes free regions available by selecting
one block, moving data of valid pages to another other region, and
then erasing the block. Thus, the victim block must have a mini-
mum number of valid pages in order to have more efficient GC.
Typically, the size of one page is 4 KB, and it doubles as manufac-
turing process advances; a block is typically composed of 64 or 128
pages. Each command and data transfer for read and write opera-
tions is accomplished in three steps; cmd, data, and program, cmd,
read, and data for write and read, respectively. Among the three,
cmd and data occupy a physical channel between the flash control-
ler and the flash memory chip while program=read is an internal
operation of the flash memory.

In the internal of flash device, Flash Translation Layer (FTL) [1] is
the heart of flash software which manages address mapping table
between logical address of host part and physical address of NAND
flash part. Indeed, except the mapping management, FTL does

many other roles, including wear leveling, garbage collection, bad
block management, request queuing and caching, and so on. FTL
remaps the address of incoming write requests from one physical
address to another one, as shown in Fig. 1. In the figure, the IO
management unit for filesystem, which is usually called block in
filesystem, is assumed to be same with page in flash memory.
When filesystem reads page of logical address, FTL translates it
to physical address with mapping table. Then the data is retrieved
from physical address. When a logical page is written, the FTL
writes the data to a new physical page and updates the mapping.
Essentially, the FTL provides logical address and hides the under-
line physical address, which gives identical interface as traditional
storage device.

Currently, FTL mapping management schemes can be divided
into three categories according to mapping granularity: page-level
mapping, block-level mapping, and hybrid-level mapping. In a page
mapping scheme, the mapping table is maintained at the page level,
so that a logical page number is mapped to a physical page number
in the mapping table. In the block mapping scheme, mapping table
is maintained at a block level, so that a logical block number is
mapped to a physical block number. Accordingly, a logical page
can be identified by the physical page offset within the correspond-
ing physical block number. Finally, hybrid mapping mixes these
two mapping tables. The advantage of block-level mapping is that
it has small mapping table size. However, it basically gives poor
performance due to the lack of flexibility. Likewise, page-level
mapping can give high performance with good mapping flexibility,
but it requires a large mapping table to be maintained in the main
memory.

A number of prior studies have been performed to improve in
FTL. At the early stage of FTL development, design focused on
single-chip-based portable storage such as SD cards, CompactFlash
cards, and USB drives. The FTL mapping management scheme of
these storage systems are mainly based on block-level I/O to reduce
main memory usage in portable devices [3–9]. Kim et al. used one
log block per one data block, and page-level mapping was used
for for performance enhancement of log blocks [4]. Kang et al. used
several blocks grouped into a superblock, and page-level mapping
was used for more efficient use of the superblock [5]. Lee et al.
employed only one log block for all the blocks to reduce log block
management overhead and enhance log block utility [6]. For more
efficient use of blocks, Gupta et al. deployed demand-based
caching of a page-level mapping table, implying that page-level
mapping management outperforms all other forms of block-level

...
...

1
2

8
7
6
5
4
3

10
11
21
34
35
45
46
52

Mapping Table

Journaling

Module

37 38 39 40

Garbage
Collection

Wear
Leveling

4

......

NAND Flash MemoryPage

Logical Address

Filesystem

Physical address

BlockBlock

33 34 35 36

Mapping Table Management
Fltah Translation Layer

Fig. 1. An example of FTL mapping table management and IO operation.

685 S.-H. Lim, Y.-S. Jeong / Journal of Systems Architecture 60 (2014) 684–692

Download English Version:

https://daneshyari.com/en/article/460444

Download Persian Version:

https://daneshyari.com/article/460444

Daneshyari.com

https://daneshyari.com/en/article/460444
https://daneshyari.com/article/460444
https://daneshyari.com

