
Integrated write buffer management for solid state drives

Sungmin Park, Jaehyuk Cha, Sooyong Kang ⇑
Division of Computer Science and Engineering, Hanyang University, Seoul 133-791, Republic of Korea

a r t i c l e i n f o

Article history:
Received 20 November 2012
Received in revised form 14 January 2014
Accepted 20 January 2014
Available online 29 January 2014

Keywords:
Flash memory
Write buffer
Log block
Flash translation layer
Solid-state disk
Storage device

a b s t r a c t

NAND flash memory-based Solid State Drives (SSD) have many merits, in comparison to the traditional
hard disk drives (HDD). However, random write within SSD is still far slower than sequential read/write
and random read. There are two independent approaches for resolving this problem as follows: (1) using
overprovisioning so that reserved portion of the physical memory space can be used as, for example, log
blocks, for performance enhancement, and (2) using internal write buffer (DRAM or Non-Volatile RAM)
within SSD. While log blocks are managed by the Flash Translation Layer (FTL), write buffer management
has been treated separately from the FTL. Write buffer management schemes did not use the exact status
of log blocks, and log block management schemes in FTL did not consider the behavior of the write buffer
management scheme. This paper first demonstrates that log blocks and write buffers maintain a tight
relationship, which necessitates integrated management to both of them. Since log blocks can also be
viewed as another type of write buffer, we can manage both of them as an integrated write buffer. Then
we propose an Integrated Write buffer Management scheme (IWM), which collectively manages both the
write buffer and log blocks. The proposed scheme greatly outperforms previous schemes in terms of write
amplification, block erase count, and execution time.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Recent advancements within the NAND-FLASH technology have
supported the growing usage of a Solid State Drive (SSD)1 as a
commodity storage media. Although an SSD has still a higher cost
per byte, as compared to an HDD, it is expected in the near future
that SSD will replace most HDDs [10]. SSD, unlike HDD, has no
mechanical movement when accessing data, and this distinguishing
feature guarantees the excellent performance of random reads (i.e.
20–50 times faster than HDDs [12]). In contrast, flash memory’s lack
of an in-place update enforces it to erase data blocks prior to the data
update operation. Within flash memory, read/write operations are
done in a page unit, while an erase operation is done in a block unit.
In order to update particular data within a specific block, flash
memory first erases the entire target block storing the data and then
writes newly updated data in company with the pre-existing non-
updated data stored in the same block. Due to the fact that an SSD
includes such a drawback of flash memory, heavy random write
requests generate numerous copy and erase operations, even for

valid (i.e. non-updated) pages internally. This is the reason for both
the degraded performance and shortened lifespan.

In recent years, many studies from different system layers have
been performed to overcome such a write anomaly within flash
memory. In order to reduce the number of write operations in flash
memories, flash-aware buffer management schemes [24,14,13,
26,29] and write buffer management schemes in SSD [17,16] have
been proposed. As an approach that aims to directly manage flash
memory by developing flash file systems, YAFFS [5], JFFS2 [8], and
UBIFS [21], have been developed. Meanwhile, there are attempts
to research on file systems for HDDs, which also nicely accommo-
date the characteristics of SSDs, such as NILFS [22], BtrFS [23], and
ZFS [28]. At the host interface layer, new commands (for example,
TRIM command) that are specifically used for an SSD are added in
order to reduce the number of copies and erases for valid pages
by passing the information for erased data blocks to the SSD.
Nevertheless, if these approaches are used in a system that has both
SSDs and HDDs, there are certain limitations that prevent users
from adopting these approaches: (1) buffer replacement policies
might cause performance degradation when HDD is used together
with SSD, (2) it require users to install an additional flash file system,
besides a file system for HDD, and (3) a flash-aware general purpose
file system might not simultaneously optimize the performance of
both SSD and HDD. Hence, for the widespread use of an SSD, it is
needed to resolve the SSD’s internal problems inside an SSD.

http://dx.doi.org/10.1016/j.sysarc.2014.01.005
1383-7621/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Address: Division of Computer Science and Engineering,
Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of
Korea. Tel.: +82 2 2220 1725; fax: +82-2-2220-4244.

E-mail address: sykang@hanyang.ac.kr (S. Kang).
1 Throughout this paper, flash memory means NAND flash memory and SSD means

NAND flash memory-based SSD.

Journal of Systems Architecture 60 (2014) 329–344

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/ locate /sysarc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2014.01.005&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2014.01.005
mailto:sykang@hanyang.ac.kr
http://dx.doi.org/10.1016/j.sysarc.2014.01.005
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc


There are two research directions that can be used for solving
the random write problem inside an SSD. The first approach is to
use certain data blocks as log blocks or replacement blocks so that
the updated data is written on log blocks instead of original data
blocks. The Flash Translation Layer manages these log blocks, and
the random write performance and the number of operations differ
largely according to the number of log blocks and the management
policy of an FTL. In this FTL category, we have seen NFTL [20], AFTL
[7], Superblock Scheme [15], BAST [18], and FAST [19] in literature.
The other approach is to exploit a write buffer inside an SSD in
order to reduce the number of write and erase operations, and
we have seen BPLRU [17], CLC [16] and PUD-LRU [30].2

As the two aforementioned approaches have been researched
independently, there is no such thing as interdisciplinary study
considering both the write buffer management policy and the log
block management policy in union. In our previous work [16],
we proposed an Optimistic FTL, a log block management policy
that is designed by observing destaged data patterns from a write
buffer to flash memory. Optimistic FTL manages log blocks while
considering the characteristics of normal write buffer management
policies. In contrast, REF [26] assumed a normal log block manage-
ment policy and proposed an OS-level write buffer replacement
policy that works according to the assumed log block management
policy. Although these two studies suggest the necessity of mutual
recognition between a log block management policy and a write
buffer management policy, they remained as a reactive policy,
which considers only the result of the other policy, not a proactive
policy that operates closely with the other. However, since both log
block management and write buffer management policies are
under the control of an SSD controller, the information sharing
and the possible ties between the two policies are feasible. In
addition, from a broad perspective, a log block also can be regarded
as a kind of write buffer. Hence, it is necessary to research an inter-
disciplinary study between these two policies.

The main contribution of this paper is to introduce the necessity
of integrated management for both log blocks and write buffers to
the SSD community. In detail, we first delve further into the corre-
lation between the two management policies by means of extensive
interrelated experiments using a variety of workloads, and we then
devise an example scheme, Integrated Write Buffer Management
Policy (IWM), in order to validate our proposed necessity. Extensive
experiments, under a variety of experimental configurations, show
that IWM, in most cases, shows a better performance than any
other policy. It successfully reveals the potential of the integrated
buffer management, in terms of both the performance and lifetime
of SSD, and we think that it can be a stepping stone for developing a
more effective integrated buffer management scheme, in the future.

The rest of the paper is organized as follows: Section 2 explains
background materials and motivations, Section 3 discusses IWM in
details, Section 4 shows performance studies. In Section 5, we dis-
cuss the similarities and differences between our work and prior
works, and in Section 5 we conclude the paper.

2. Background and motivation

2.1. Background

Log block management: Hybrid mapping schemes use three
kinds of merge operations – switch merge, partial merge, and full
merge. Among them, only full merge is implemented differently
according to the log block management policy in each Hybrid map-

ping scheme. Switch Merge is used when all pages in a log block
are sequentially written. Partial Merge is performed when some
pages (including the first page) in a log block are sequentially
written and the remaining pages are free. Full Merge is executed
when pages in a log block are randomly written, and is the most
expensive merge operation. The two most representative hybrid
mapping schemes are BAST and FAST. While FAST copes with
random writes more efficiently than BAST, it shows very large
fluctuations in the full merge overhead.

The page mapping policy usually manages the entire address
space in a page unit, eliminating the necessity of log blocks. It
has the advantage of efficiently handling random writes, but has
the drawback of maintaining a large page table that maps the
entire pages within SSD. For example, 1 TB SSD needs at least
1 GB DRAM for mapping table. In order to remedy this, DFTL [11]
proposed a novel method that implements the page mapping strat-
egy with a small amount of memory, which stores only a certain
part of the entire page table. This is achieved by viewing the local-
ity information of given workloads. However, this approach cannot
help showing poor performance for low locality workloads.
Especially, as the SSD capacity becomes larger and larger while
its performance becomes better and better, an SSD can be used
in multi-purpose systems which provide multiple services such as
web, mail, file and ftp services, simultaneously. In those systems,
the aggregated IO accesses can have low overall locality, which
can make the caching-based FTL poor. In this regard, more recent
works, such as Janus-FTL [31] and WAFTL [32], try to use both block
and page mappings, simultaneously, in a single device. These works
exploit their own operations which correspond to merge operations
in Hybrid mapping schemes (i.e., Buffer Zone Migration in WAFTL
and Fusion and Defusion operations in Janus-FTL).

By effectively exploiting both block and page mappings, they
could not only decrease the amount of mapping information but
also improve the performance. For example, in WAFTL, they showed
that by workload-adaptively using multiple mapping granularities
and exploiting appropriate caching strategy, they could achieve up
to 34% performance improvement over DFTL. It means that if the
caching scheme is combined with the hybrid granularity mapping
scheme, it is possible to achieve an improved performance than
the pure caching-based FTL. In Janus-FTL, they showed that their
scheme, in some cases, could outperform pure page-mapped FTL
which has no outstanding optimization technique for garbage col-
lection. Hence, assuming the SSD capacity will ever increase, we be-
lieve that the basic mechanism of the Hybrid mapping schemes will
still be valuable in terms of both the theoretic and practical aspects.
Since our contribution is providing a framework for an integrated
management between write buffer and log block, provided that a gi-
ven FTL exploits a log block-like scheme, our framework can be
effectively used to further increase the performance of the FTL.

Write buffer management: For many decades, we have seen
numerous studies on buffer management policies for an HDD. Con-
sidering both hit ratio in write buffers and mechanical movements
inside an HDD, write buffer management schemes, such as Stack
Model [6] and WOW [9], have regarded temporal and spatial
locality as important factors. In opposition to this, write buffer
management policies for flash memory do not need to consider
mechanical movements, rather, there should be an effort to reduce
the number of extra operations occurring inside an FTL. In tradi-
tional write buffer management policies, for the efficient merge
operation of an FTL, the method of clustering pages in the same
block of flash memory and writing these clustered pages together
is widely used within research work [13,17,26,16,30]. FAB [13]
proposed a DRAM buffer management policy for a Portable Media
Player using flash memory, and it was the first attempt to cluster
pages aligned by the erase boundary in flash memory. When
replacing buffers, FAB selects the biggest cluster as a victim cluster

2 Though FAB and REF were initially devised for the page replacement scheme
within Operating Systems, they also can be used as a write buffer management
scheme in SSD. Therefore, in this paper, we categorize them as write buffer
management policies.

330 S. Park et al. / Journal of Systems Architecture 60 (2014) 329–344



Download English Version:

https://daneshyari.com/en/article/460449

Download Persian Version:

https://daneshyari.com/article/460449

Daneshyari.com

https://daneshyari.com/en/article/460449
https://daneshyari.com/article/460449
https://daneshyari.com

