

Ann. I. H. Poincaré - AN 25 (2008) 659-678

www.elsevier.com/locate/anihpc

C^1 -regularity of the Aronsson equation in \mathbb{R}^2

Changyou Wang a,*, Yifeng Yu b

^a Department of Mathematics, University of Kentucky, Lexington, KY 40506, USA
^b Department of Mathematics, University of Texas at Austin, Austin, TX 78712, USA

Received 2 May 2006; received in revised form 26 January 2007; accepted 5 March 2007 Available online 2 August 2007

Abstract

For a nonnegative, uniformly convex $H \in C^2(\mathbb{R}^2)$ with H(0) = 0, if $u \in C(\Omega)$, $\Omega \subset \mathbb{R}^2$, is a viscosity solution of the Aronsson equation (1.7), then $u \in C^1(\Omega)$. This generalizes the C^1 -regularity theorem on infinity harmonic functions in \mathbb{R}^2 by Savin [O. Savin, C^1 -regularity for infinity harmonic functions in dimensions two, Arch. Ration. Mech. Anal. 176 (3) (2005) 351–361] to the Aronsson equation.

© 2007 Elsevier Masson SAS. All rights reserved.

Résumé

Si $H \in C^2(\mathbf{R}^2)$ est une fonction uniformément convexe telle que H(0) = 0, et si $u \in C(\Omega)$, $\Omega \subset \mathbf{R}^2$, est une solution de viscosité de l'équation d'Aronsson (1.7), alors $u \in C^1(\Omega)$. Ceci généralise à l'équation d'Aronsson le théorème de C^1 -régularité de Savin [O. Savin, C^1 -regularity for infinity harmonic functions in dimensions two, Arch. Ration. Mech. Anal. 176 (3) (2005) 351–361] pour les fonctions ∞ -harmoniques dans \mathbf{R}^2 .

© 2007 Elsevier Masson SAS. All rights reserved.

MSC: 35J60; 35J70

Keywords: Viscosity solution; Discrete gradient flow

1. Introduction

Calculus of variations in L^{∞} was initiated by Aronsson [1–4] in 1960s. Thanks to both the development of theory of viscosity solutions of elliptic equations by Crandall and Lions (cf. [17]) and several applications to applied fields (cf. Barron [8], Barron and Jensen [9], Aronsson, Crandall and Juutinen [7], and Crandall [13]), there have been great interests in the last few years to study the minimization problem of the *supremal* functional:

$$F(u,\Omega) = \operatorname{ess\,sup}_{x \in \Omega} H(x,u(x),\nabla u(x)), \quad \Omega \subset \mathbf{R}^n, \ u \in W^{1,\infty}(\Omega,\mathbf{R}^l). \tag{1.1}$$

Barron, Jensen and Wang [10] have established both necessary and sufficient conditions for the sequentially lower semicontinuity property of the supremal functional F in $W^{1,\infty}$, which are suitable L^{∞} -versions of Morrey's qua-

E-mail address: cywang@ms.uky.edu (C. Wang).

^{*} Corresponding author.

siconvexity (cf. [20]) for integral functionals. In the scalar case (l = 1), Barron, Jensen and Wang [11] (see also Crandall [12]) have established, under appropriate conditions, the existence of *absolute minimizers* and proved that any absolute minimizer is a viscosity solution of the Aronsson equation

$$-\nabla_x \left(H(x, u(x), \nabla u(x)) \right) \cdot H_p(x, u(x), \nabla u(x)) = 0, \quad x \in \Omega.$$
 (1.2)

Among other results in [22], the second author has showed that the convexity of $H(\cdot, p)$ are sufficient for viscosity solutions of the Aronsson equation (1.2) to be absolute minimizers of F.

Partially motivated by [22] and Crandall, Evans and Gariepy [16], Gariepy, Wang and Yu [18] have established the equivalence between absolute minimizers of F and viscosity solutions of Aronsson equation (1.2) for quasiconvex Hamiltonians $H = H(p) \in C^2(\mathbb{R}^n)$ by introducing the comparison principle of *generalized cones* (see Theorem 2.1 in Section 2 below).

In this paper, we are mainly interested in the regularity (e.g. differentiability or C^1) of viscosity solutions of the Aronsson equation.

Before stating the main results, we would like to review some of previous results for $H(p) = |p|^2$, $p \in \mathbb{R}^n$. It is well known (cf. [5,6,19]) that Eq. (1.2) is the infinity-Laplace equation, of which a viscosity solution is called an infinity harmonic function,

$$-\Delta_{\infty} u := -\sum_{i,j=1}^{n} u_i u_j u_{ij} = 0, \quad \text{in } \Omega,$$

$$\tag{1.3}$$

and the absolute minimality is called absolute minimal Lipschitz extension (or AMLE) property:

for any open subset $U \subseteq \Omega$ and $v \in W^{1,\infty}(U) \cap C(\bar{U})$ with v = u on ∂U , we have

$$\|\nabla u\|_{L^{\infty}(U)} \leqslant \|\nabla v\|_{L^{\infty}(U)}. \tag{1.4}$$

Aronsson [5] proved that any C^2 -infinity harmonic function satisfies the AMLE property. Jensen [19] has proved the equivalence between an infinity harmonic function and the AML property, and the unique solvability of the Dirichlet problem of Eq. (1.3).

Crandall, Evans and Gariepy [16] have recently showed that $u \in C^0(\Omega)$ is an infinity harmonic function iff u enjoys comparison with cones in Ω :

for any open subset $U \subseteq \Omega$, $a, b \in \mathbb{R}$, and $x_0 \in \Omega$,

$$u(x) \leqslant (\geqslant)a + b|x - x_0| \quad \text{on } \partial(U \setminus \{x_0\}) \Rightarrow u(x) \leqslant (\geqslant)a + b|x - x_0| \quad \text{in } U.$$
 (1.5)

In a very recent important paper [21], Savin has utilized [16] and Crandall and Evans [15] to prove that any C^0 -infinity harmonic function in $\Omega \subset \mathbb{R}^2$ is in $C^1(\Omega)$.

In this paper, we extend the main theorems of [21] to the Aronsson equation for a class of Hamiltonian functions $H \in C^2(\mathbb{R}^2)$.

First we extend [15] and obtain the following theorem on blow-up limits of viscosity solutions of the Aronsson equation on \mathbb{R}^n for $n \ge 2$, which may have its own interests.

Theorem A. Assume that $H \in C^2(\mathbb{R}^n)$ is nonnegative and uniformly convex, i.e. there is $\alpha_H > 0$ such that

$$p^T \cdot H_{pp}(p) \cdot p \geqslant \alpha_H |p|^2, \quad \forall p \in \mathbf{R}^n,$$
 (1.6)

and H(0) = 0. Suppose that $u \in C^0(\Omega)$, $\Omega \subset \mathbb{R}^n$, is a viscosity solution of the Aronsson equation:

$$-H_p(\nabla u(x)) \otimes H_p(\nabla u(x)) : \nabla^2 u(x) = 0, \quad \text{in } \Omega,$$

$$\tag{1.7}$$

then for any $x \in \Omega$, there exists a $e_{x,r} \in \mathbb{R}^n$, with $H(e_{x,r}) = S^+(H, u, x)$ (see Section 2 for the definition of $S^+(H, u, x)$), such that

$$\lim_{r \to 0} \max_{B_r(x)} \frac{|u(y) - u(x) - e_{x,r} \cdot (y - x)|}{r} = 0.$$
(1.8)

Based on Theorem A and the main theorem of [18], we are able to make necessary modifications of the idea of [21] to prove

Download English Version:

https://daneshyari.com/en/article/4604802

Download Persian Version:

https://daneshyari.com/article/4604802

<u>Daneshyari.com</u>