Journal of Systems Architecture 61 (2015) 374-382

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Message scheduling for real-time interprocessor communication

@ CrossMark

Stefan Waldherr **, Sigrid Knust?, Stefan Aust”

2 Institute of Computer Science, University of Osnabriick, Germany
b Institute of Computer Science, Clausthal University of Technology, Germany

ARTICLE INFO ABSTRACT

Article history:

Received 18 February 2015

Received in revised form 7 May 2015
Accepted 24 June 2015

Available online 2 July 2015

In this paper an efficient algorithm is proposed which optimizes periodic message scheduling in a
real-time multiprocessor system. The system is based on a many-core single-chip computer architecture
and uses a multistage baseline network for inter-core communication. Due to its basic architecture, inter-
nal blockings can occur during data transfers, i.e. the baseline network is not real-time capable by itself.
Therefore, we propose a scheduling algorithm that may be performed before the execution of an appli-
cation in order to compute a non-blocking schedule of periodic message transfers. Additionally, we opti-

Keywords: . mize the clock rate of the network subject to the constraint that all data transfers can be performed in a
Message scheduling
Real time non-blocking way. Our solution algorithm is based on a generalized graph coloring model and a random-

ized greedy approach. The algorithm was tested on some realistic communication scenarios as they
appear in modern electronic car units. Computational results show the effectiveness of the proposed

Baseline network
Periodic scheduling

Graph coloring algorithm.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction and related work

Computer architectures for real-time applications are wide-
spread but all of them suffer from multiple concurrently executing
tasks with real-time constraints on a very small number (usually
not more than four) of cores. To guarantee a given time behavior
and to solve upcoming conflicts with real time data constraints,
an appropriate task scheduling strategy is required. Additionally,
data complexity and computational demands of embedded sys-
tems are ever increasing. A single-core CPU, however, forces the
tasks to be executed inside a given time schedule, and especially
in time critical systems with safety requirements an in-depth anal-
ysis for the worst-case execution time must be made to guarantee
that the chosen sequence of tasks can meet all deadlines. In con-
ventional multitasking computers the task scheduler is responsible
for the correct time response for each task, which is more and more
difficult to guarantee at a higher number of tasks.

To master the time behavior in complex real-time applications,
in [4] the space-sharing concept was introduced that circumvents
the competition of tasks for computing resources by using a
many-core architecture with an appropriate network on a single
chip. This idea takes into account that real-time systems with feed-
forward and feedback control, e.g. electronic control units (ECU) in

* Corresponding author.
E-mail addresses: stefan.waldherr@uni-osnabrueck.de (S. Waldherr), sigrid.
knust@uni-osnabrueck.de (S. Knust), stefan.aust@alumni.tu-clausthal.de (S. Aust).

http://dx.doi.org/10.1016/j.sysarc.2015.06.002
1383-7621/© 2015 Elsevier B.V. All rights reserved.

automobiles, operate in a periodic manner. Input data have to be
updated cyclically within predefined time periods by sensor poll-
ing in the environmental system and processed by the computing
system. After a period of time, called cycle time T, the same
application code is repeated again which reads sensor data, pro-
cesses them and outputs actuator data as a computing result.
Tya in turn must be chosen according to the sampling theorem
the sensors and actuators must obey. Further, every task i may
have its own cycle time Ty (i).

The space-sharing concept distributes real time software from a
powerful processor with complex task scheduling into smaller
periodic software components with one dedicated and thus smal-
ler processor for each software component. In this way, task
scheduling problems are solved, but on the other hand, the com-
munication network of several hundred processors shows new
challenges that cannot be handled by established interprocessor
communication systems such as buses. For interprocessor commu-
nication on our multiprocessor system on a single silicon chip
(MPSoC) we re-use a multistage interconnection network known
as baseline network [15], which is able to route a direct connection
line from sending to every other receiving node. This network has a
simple self-routing mechanism and belongs to the class of
log,N-networks which are the most hardware-efficient intercon-
nection means. However, the network exhibits internal blockings
for some but not all data transfers from inputs to outputs, a fact
that usually disqualifies for real-time data transfer. Therefore, the
interprocessor communication must be sequenced appropriately

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2015.06.002&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2015.06.002
mailto:stefan.waldherr@uni-osnabrueck.de
mailto:sigrid.knust@uni-osnabrueck.de
mailto:sigrid.knust@uni-osnabrueck.de
mailto:stefan.aust@alumni.tu-clausthal.de
http://dx.doi.org/10.1016/j.sysarc.2015.06.002
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc

S. Waldherr et al./Journal of Systems Architecture 61 (2015) 374-382 375

before a user application can be executed. In this work we present
an algorithm that may be used to obtain feasible message sched-
ules. The algorithm is based on modeling the periodic processor
communication as a periodic scheduling problem and using graph
theoretical concepts for its solution process.

In most cases, messages in the MPSoC have to be sent periodi-
cally, where the period is given by the maximum data update rate.
Aperiodic events can be handled by the principle of data polling as
well, where the update rate is given by the maximum delivery
time, i.e., the maximum response time of the system. In fact, based
on this update period the message schedule allocates spare time
slots that can be used for aperiodic messages, assuming that we
are able to abstract the interprocessor communication of the
real-time MPSoC to a set of periodic messages. Furthermore, cou-
pled messages, e.g. the speed of certain wheels for stability control,
will be scheduled synchronously using identical update periods.

There already exist various approaches to periodic (also called
cyclic) scheduling problems. Such problems arise in numerous
applications, e.g. in periodic manufacturing or rostering and rail-
road timetabling. Levner et al. [9] provide a concise survey of appli-
cations and solution approaches. Within their survey they discuss
several variants: cyclic job shop scheduling deals with the cyclic
manufacturing of multiple products which consist of several oper-
ations that have to be processed on dedicated machines. The goal is
to find a processing order in which the operations are processed,
minimizing the time of one production cycle. In cyclic robot
scheduling robots are used to periodically transport parts between
machines. The robot and machines can only handle one part at a
time and after a part is processed by a machine it must be imme-
diately picked up by the robot. Given a robot route and a process-
ing sequence of the parts on machines, the goal is to find
completion times of the jobs on the machines such that the time
of one cycle is minimized. Another class are cyclic project schedul-
ing problems. Given a set of activities which have to be performed
periodically and precedence constraints, the goal once again is to
minimize the time of one production cycle. Further variants of this
problem consider the minimization of the number of processors on
which the projects are processed.

Serafini and Ukovich [14] defined the Periodic Event Scheduling
Problem (PESP): for a given set of tasks with a common cycle time
T, and generalized precedence constraints (defining minimum
and maximum delays between the execution of two distinct tasks),
find a feasible periodic schedule. It is possible to model situations
where each task has its own cycle time T (i) by transforming the
problem into a larger problem and using appropriate precedence
constraints. However, Serafini and Ukovich deemed this too exten-
sive from a computational point of view and thus defined an
extended PESP (EPESP) which is able to handle multiple cycle
times. Further, they presented a backtracking algorithm to solve
the EPESP.

Within their work, Serafini and Ukovich also performed some
experimental computations, testing their PESP algorithm on
instances of up to 200 tasks. Experiments using mixed integer pro-
gramming and constraint programming formulations of the PESP
were conducted in [11] solving problems that occur in German
railway applications, again only on instances with up to 173 tasks.
Further computational studies include heuristic approaches based
on local search [11] (173 tasks) and genetic algorithms [12] (100
tasks) among others.

Our problem differs from the cyclic scheduling problems that
are found in the literature in an important way. Instead of prece-
dence constraints we have to deal with conflicting processes. Our
problem could be well modeled as an EPESP, e.g. by employing
generalized precedence constraints for conflicting tasks, stating
that there has to be a delay of at least one time unit between them.

However, the methods used to solve the general EPESP are compu-
tationally intractable for real-world instances since in modern cars
100,000 tasks need to be scheduled. While we will show that our
problem is slightly more specific than the general EPESP, our spe-
cialized problem is also NP-complete and exact methods are still
impractical for real-world instances. Therefore, we propose a
heuristic method to obtain results in acceptable time.

The paper is organized as follows: in Section 2, the concept of
space-sharing is repeated, additionally, the proposed computer
architecture is briefly introduced. This is followed by Section 3,
where the used communication system model and the topology
of the baseline network are described in detail. In Section 4, we
model the problem as a periodic scheduling problem and explain
a message scheduling algorithm which is based on an extended
graph coloring model. The performance of this algorithm was eval-
uated in some computational tests which are described in
Section 5. Finally, Section 6 draws a conclusion of the performed
work.

2. Introduction of space-sharing using a MPSoC

In this section we give a short introduction to the concept of
space-sharing and the advantages of the proposed computer archi-
tecture for which message scheduling is necessary. A MPSoC may
scale up to hundreds of processors or cores as state-of-the-art. In
case of up to ten processors, we speak of a multi-core CPU, while
the term many-core CPU may be used for higher numbers than
that. Multi-core CPUs are commonly coupled via shared memory
which is implemented as a 2nd level on-chip cache. However,
cache coupling is not scalable with respect to bandwidth and
latency. Therefore, if the number of cores is high, in the literature
message passing is proposed instead of shared variables. Message
passing is often implemented by means of a dynamic multistage
interconnection network which is known from supercomputer
architectures.

We reuse this approach for a MPSoC with a network-on-chip
(NoC) for interprocessor communication. Because of their easier
usage we discuss MPSoCs for Field Programmable Gate Arrays
(FPGASs) only. During the last few years the capabilities of FPGAs
have increased significantly, thus allowing to implement a NoC
and a many-core CPU on the same FPGA, albeit with less powerful
processors and less memory as in a full-custom design.
Additionally, with respect to FPGA technology each CPU core exists
as a hardware description only that was synthesized explicitly for
the used FPGA type. Therefore, such a core is denoted as soft-core
processor.

Space-sharing was firstly introduced in [2]. It can accommodate
a large number of tasks that have to obey real-time constraints on
one FPGA. Task scheduling as it is known from processor
time-sharing is not needed. To avoid competitions for CPU
resources between concurrent tasks, each task is statically allo-
cated to an own soft-core processor. The same holds for operating
system tasks such as device drivers and IO tasks. As a consequence,
the number of processors must match the number of tasks to be
executed, and each processor must have enough computing power
and memory to meet the timing and memory requirements of its
task. Fig. 1 shows the difference between time-sharing and
space-sharing. Here, T is the set of tasks and P is the set of proces-
sors in the system.

In Fig. 2, a many-core architecture for a MPSoC is shown. It con-
sists of N processor-memory modules (PMMs), which are loosely
coupled by an interconnection network for message exchanging
between cores. Optionally, a tight coupling is possible as well by
a shared memory module which may be connected to the network
instead of a core. The network ports can also couple peripheral

Download English Version:

https://daneshyari.com/en/article/460493

Download Persian Version:

https://daneshyari.com/article/460493

Daneshyari.com

https://daneshyari.com/en/article/460493
https://daneshyari.com/article/460493
https://daneshyari.com

