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The Schur–Horn theorem is a classical result in matrix analysis which characterizes 
the existence of positive semidefinite matrices with a given diagonal and spectrum. 
In recent years, this theorem has been used to characterize the existence of finite 
frames whose elements have given lengths and whose frame operator has a given 
spectrum. We provide a new generalization of the Schur–Horn theorem which 
characterizes the spectra of all possible finite frame completions. That is, we 
characterize the spectra of the frame operators of the finite frames obtained by 
adding new vectors of given lengths to an existing frame. We then exploit this 
characterization to give a new and simple algorithm for computing the optimal 
such completion.

Published by Elsevier Inc.

1. Introduction

The Schur–Horn theorem [16,25] is a classical result in matrix analysis which characterizes the existence 
of positive-semidefinite matrices with a given diagonal and spectrum. To be precise, let F be either the real 
field R or the complex field C, and let {λn}Nn=1 and {μn}Nn=1 be any nonincreasing sequences of nonnegative 
real scalars. The Schur–Horn theorem states that there exists a positive semidefinite matrix G ∈ F

N×N

with eigenvalues {λn}Nn=1 and with G(n, n) = μn for all n = 1, . . . , N if and only if {λn}Nn=1 majorizes
{μn}Nn=1, that is, precisely when

N∑
n=1

μn =
N∑

n=1
λn,

j∑
n=1

μn ≤
j∑

n=1
λn, ∀j = 1, . . . , N, (1)

* Corresponding author.
E-mail address: Matthew.Fickus@gmail.com (M. Fickus).

http://dx.doi.org/10.1016/j.acha.2015.03.004
1063-5203/Published by Elsevier Inc.

http://dx.doi.org/10.1016/j.acha.2015.03.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/acha
mailto:Matthew.Fickus@gmail.com
http://dx.doi.org/10.1016/j.acha.2015.03.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.acha.2015.03.004&domain=pdf


506 M. Fickus et al. / Appl. Comput. Harmon. Anal. 40 (2016) 505–528

denoted {μn}Nn=1 � {λn}Nn=1. The first part of (1) is simply a trace condition: the sum of the diagonal 
entries of G must equal the sum of its eigenvalues. The second part of (1) is less intuitive. To understand 
it better, it helps to have some basic concepts from finite frame theory.

For any finite sequence of vectors {ϕn}Nn=1 in FM , the corresponding synthesis operator is the M × N

matrix whose nth column is ϕn, namely Φ : FN → F
M , Φy :=

∑N
n=1 y(n)ϕn. Its N × M adjoint is the 

analysis operator Φ∗ : FM → F
N , (Φ∗x)(n) := 〈ϕn, x〉. The vectors {ϕn}Nn=1 are a finite frame for FM if 

they span FM , which is equivalent to having their M×M frame operator ΦΦ∗ =
∑N

n=1 ϕnϕ
∗
n be invertible. 

Here, ϕ∗
n is 1 ×M adjoint of the M × 1 column vector ϕn, namely the linear operator ϕ∗

nx = 〈ϕn, x〉. The 
least and greatest eigenvalues α and β of ΦΦ∗ are called the lower and upper frame bounds of {ϕn}Nn=1, 
and their ratio β/α is the condition number of ΦΦ∗. Inspired by applications involving additive noise, 
finite frame theorists often seek frames that are as well-conditioned as possible, the ideal case being tight 
frames in which ΦΦ∗ = αI for some α > 0. They also care about the lengths of the frame vectors, often 
requiring that ‖ϕn‖2 = μn for some prescribed sequence {μn}Nn=1. These lengths weight the summands 
of the linear-least-squares objective function ‖Φ∗x − y‖2 =

∑N
n=1 |〈ϕn,x〉 − y(n)|2, and adjusting them is 

closely related to the linear-algebraic concept of preconditioning. That is, we often want to control both the 
spectrum of the frame operator as well as the lengths of the frame vectors. For example, much attention 
has been paid to finite tight frames whose vectors are unit norm [2,5,14,15].

In this context, the reason we care about the Schur–Horn theorem is that it provides a simple charac-
terization of when there exists a finite frame whose frame operator has a given spectrum and whose frame 
vectors have given lengths. To elaborate, the earliest reference which briefly mentions the Schur–Horn the-
orem in the context of finite frames seems to be [26], which stems from even earlier, closely related work on 
synchronous CMDA systems [27,28]. An in-depth analysis of the connection between frame theory and the 
Schur–Horn theorem is given in [1]. There as here, the main idea is to apply the Schur–Horn theorem to 
the Gram matrix of a given sequence of vectors {ϕn}Nn=1, namely the N ×N matrix Φ∗Φ whose (n, n′)th 
entry is (Φ∗Φ)(n, n′) = 〈ϕn, ϕn′〉. Indeed, suppose there exists {ϕn}Nn=1 in FM whose frame operator ΦΦ∗

has spectrum {λm}Mm=1 and whose frame vectors have squared-norms ‖ϕn‖2 = μn for all n = 1, . . . , N . The 
diagonal entries of Φ∗Φ are {(Φ∗Φ)(n, n)}Nn=1 = {‖ϕn‖2}Nn=1 = {μn}Nn=1 which, by reordering the frame 
vectors if necessary, we can assume are nonincreasing. Meanwhile, the spectra of the Gram matrix Φ∗Φ and 
the frame operator ΦΦ∗ are zero-padded versions of each other. Since adjoining vectors of squared-length 
μn = 0 to a sequence {ϕn}Nn=1 does not change its M ×M frame operator ΦΦ∗ we further assume without 
loss of generality that M ≤ N , implying that the spectrum of Φ∗Φ is {λm}Mm=1 appended with N−M zeros. 
Applying the Schur–Horn theorem to Φ∗Φ then implies that {λm}Mm=1 ∪ {0}Nm=M+1 necessarily majorizes 
{μn}Nn=1, with (1) reducing to

N∑
n=1

μn =
M∑

m=1
λm,

j∑
n=1

μn ≤
j∑

m=1
λm, ∀j = 1, . . . ,M. (2)

Conversely, for any M ≤ N and any nonnegative nonincreasing sequences {λm}Mm=1 and {μn}Nn=1 that sat-
isfy (2), the Schur–Horn theorem also implies that there exists a positive semidefinite matrix with spectrum 
{λm}Mm=1 ∪ {0}Nm=M+1 and with diagonal entries {μn}Nn=1. Since the rank of G is at most M , taking the 
singular value decomposition of G allows it to be written as G = Φ∗Φ where Φ ∈ F

M×N has singular 
values {λ1/2

m }Mm=1. Letting {ϕn}Nn=1 denote the columns of this matrix Φ, we see that there exists N vectors 
in FM whose frame operator ΦΦ∗ has spectrum {λm}Mm=1 and where ‖ϕn‖2 = μn for all n = 1, . . . , N .

In summary, for any M ≤ N and any nonnegative nonincreasing sequences {λm}Mm=1 and {μn}Nn=1, the 
Schur–Horn theorem gives that there exists {ϕn}Nn=1 in FM where ΦΦ∗ has spectrum {λm}Mm=1 and where 
‖ϕn‖2 = μn for all n if and only if (2) holds. Note that in the M = N case, this statement reduces the 
classical Schur–Horn theorem and as such, is an equivalent formulation of it. This equivalence allows the 
Schur–Horn and finite frame theory communities to contribute to each other. For example, the Schur–Horn 
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