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In this letter a new variational principle to the matrix singular value decomposition 
(SVD) is proposed. It is formulated as a constrained optimization problem where 
two sets of constraints are expressed in terms of compatible feature maps, which 
are evaluated on data vectors that relate to the rows and columns of the given 
matrix. Provided that a compatibility condition holds the solution can be related 
to Lanczos’ decomposition theorem. The method is further extended to nonlinear 
SVD, which is illustrated also on image examples.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The Singular Value Decomposition (SVD) is a fundamental method in linear algebra [7,9,20], with nu-
merous applications in various different fields. The historical overview paper by Stewart [19] explains the 
early history of this method, including e.g. contributions by Beltrami [3], Jordan [11,12], Eckart & Young 
[6] and Lanczos [14], and several others.

In this letter we propose an alternative variational principle to the SVD, which will be connected to 
Lanczos’ decomposition theorem [14]. The formulation is given within the setting of least squares support 
vector machines [21,23], for which the primal problem consists of constraints related to the data points and 
the L2 loss function is used in the objective function. In order to conceive the SVD within this setting, 
two data sets are first defined on the given data matrix. These relate to the rows and columns of the given 
matrix. On these two data sets compatible linear feature maps are applied then, for which the features are 
linearly combined. The objective function involves then the inner product of the weight vectors and the L2

loss function parts.
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Due to the fact that the given matrix in the SVD is typically non-square, an additional difficulty is that 
the weight vectors and feature maps should be made compatible in dimension, in order to be able to compare 
them. This leads to a compatibility condition that should hold, from which the compatibility matrix (or 
matrices, depending on the formulation) can be computed.

A major difference with the support vector machine method in [4,24], where a Mercer kernel is employed, 
is that in the main theorem proposed in this letter, no Mercer kernel is employed at the dual level. The 
reason is that one obtains inner products between the two different feature maps, instead of among the 
same feature maps. In fact this is to be expected, because the SVD formulations in integral equations make 
use of unsymmetric kernels, according to the early work by Schmidt [18].

The proposed formulation in this letter is related to the shifted eigenvalue problem [14], while least 
squares support vector machine formulations were previously given to various eigenvalue and generalized 
eigenvalue problems [1,2,15,21,22] arising in kernel principal component analysis [16,22], kernel spectral 
clustering [2,15] and kernel canonical correlation analysis [1,10,13,8,21]. A further possible extension to 
nonlinear SVD is proposed. It is not restricted to the use of Mercer kernels and reproducing kernels, which 
are commonly used in learning theory [5,17,24,25].

This letter is organized as follows. In Section 2 a number of aspects of SVD are introduced. In Section 3
a new variational principle to the SVD is proposed. In Section 4 possible extensions to nonlinear SVD are 
explained. A few illustrations are presented in Section 5.

2. Context and problem statement

The Singular Value Decomposition (SVD) [7] of a real-valued matrix A ∈ R
N×M is given by

A = UΣV T (1)

with orthonormal matrices U = [u1 . . . uN ] ∈ R
N×N , V = [v1 . . . vM ] ∈ R

M×M satisfying UTU = IN , 
V TV = IM , and diagonal matrix Σ = diag(σ1, . . . , σp) ∈ R

N×M where p = min{N, M} and singular values 
σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0. For a rank r matrix A one has the dyadic decomposition

A =
r∑

i=1
σiuiv

T
i . (2)

The SVD is related to the following variational principle [3,11,12,19] which looks for the extrema of the 
bilinear form

f(u, v) = uTAv subject to ‖u‖2 = ‖v‖2 = 1. (3)

The solutions are also obtained then from the eigenvalue decomposition

[
0 A

AT 0

][
u

v

]
= λ

[
u

v

]
(4)

where λ ∈ {±σ1, ±σ2, . . . , ±σp, 0} with multiplicity M −N for the zero eigenvalue (assuming M > N and 
non-zero σi values).

In this letter the following theorem by Lanczos [14] is of special importance.

Theorem 1 (Decomposition Theorem, Lanczos (1958)). (See [14, pp. 671–672].) An arbitrary non-zero ma-
trix A can be written as
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