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The short-time Fourier transform (STFT) is a time–frequency representation widely 
used in audio signal processing. Recently it has been shown that not only the 
amplitude, but also the phase of this representation can be successfully exploited 
for improved analysis and processing. In this paper we describe a rather peculiar 
pole phenomenon in the phase derivative, a recurring pattern that appears in a 
characteristic way in the neighborhood around any of the zeros of the STFT, 
a negative peak followed by a positive one. We describe this phenomenon numerically 
and provide a complete analytical explanation.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The short-time Fourier transform (STFT) [5,13] is a time–frequency representation widely used in audio 
signal processing. A common definition of the STFT1 is

V (f, g)(x, ω) =
∫

f(t)g(t− x)e−2πiωt dt. (1)

The STFT V (f, g)(x, ω) provides information about the frequency content of the signal f at time x and 
frequency ω. The analyzing window g determines the resolution in time and frequency.

The interpretation of the modulus of the STFT is relatively easy, considering the fact that the spectrogram 
(defined as the square absolute value of the STFT) can be interpreted as a time–frequency distribution of 
the signal energy. This interpretation led to the important success of the STFT in signal processing. In 
particular, it has been widely used for applications in speech processing and acoustics as a graphical tool 
for signal analysis [21].
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1 This is the frequency-invariant STFT.
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But the interpretation of the phase of the STFT is less obvious, and was thus hardly considered in 
applications for some time. The phase can be of particular interest for certain applications, as illustrated 
by important applications such as phase vocoder [12,7] or reassignment [18,1]. In digital image processing 
it is well known that the phase information of the discrete Fourier transform is at least as important as the 
amplitude information. In [19] it is shown that as long as the phase of the discrete Fourier transform of an 
image is retained and the amplitude is set to 1, the image can still be recognized. Similar effects can also 
be shown for acoustic signal depending on the parameters of the STFT [4].

For applications modifying the STFT coefficients, phase information is essential again. For these types 
of applications, in particular for the applications using Gabor frame multipliers [9,3] which motivated the 
present study, better understanding of the structure of the phase is necessary to improve the processing 
possibilities.

The phase of the STFT is usually not considered directly. In fact, it is more interesting to consider 
the phase derivative over time or frequency. Indeed, these quantities appear naturally in the context of 
reassignment [1] and manipulations of phase derivative over time is the idea behind the phase vocoder [7]. 
Their interpretation is easier, as the derivative of phase over time can be interpreted as local instantaneous 
frequency while the derivative of the phase over frequency can be interpreted as a local group delay.

To numerically compute the local instantaneous frequency, an unwrapping of the phase is needed to avoid 
discontinuities. This is the classical method used in [7,18]. Another method was found in [1]:

∂

∂x
arg(V (f, g)(x, ω)) = Im

(
V (f, g′)(x, ω)V (f, g)(x, ω)

|V (f, g)(x, ω)|2

)
, (2)

with g′(t) = dg
dt (t). The benefit of this method is that is does not require unwrapping, instead the phase 

derivative is computed by pointwise operations using a second STFT based on the derivative of the window.
To understand the phase of the STFT more thoroughly, in particular for applications dealing with 

multipliers, see for example [22,23,20], we conducted related extensive numerical experiments. In the process 
we observed a rather peculiar phenomenon in the phase derivative, a recurring pattern that appears in a 
similar way in the neighborhood around any of the zeros of the STFT. The behavior of the phase derivative 
close to the singularity always shows the same characteristic shape, i.e., a negative peak followed by a 
positive one. We describe this phenomenon and provide a complete analytical explanation.

This paper is organized as follows: In Section 2 we report the numerical results. In Section 3 we give a 
short, instructive, analytical example for this behavior. In Section 4 we give the full analytical results.

Results in this paper have partly been reported at a conference [17], and a preprint of this paper has 
already been cited in [2].

2. Numerical observations

For noise, naturally only statistical properties of the phase are accessible. Some interesting results for the 
phase derivative have been shown in the context of reassignment. In [8], the following result is given: We 
consider a zero-mean Gaussian analytic white noise f such that

E[Re(f(t)) · Re(f(s))] = E[Im(f(t)) · Im(f(s))] = σ2

2 δ(t− s) (3)

and E[f(t)f(s)] = 0 for any (t, s) ∈ R
2, with its real and imaginary parts a Hilbert transform pair. Using 

a Gaussian window given by g(t) = e−π t2
2σ2 , the phase derivative over time of V (f, g) is a random variable 

with distribution of the form:

ρ(v) = 1
2(1 + v2) 3

2
. (4)



Download English Version:

https://daneshyari.com/en/article/4604941

Download Persian Version:

https://daneshyari.com/article/4604941

Daneshyari.com

https://daneshyari.com/en/article/4604941
https://daneshyari.com/article/4604941
https://daneshyari.com

