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The Hard Thresholding Pursuit algorithm for sparse recovery is revisited using a 
new theoretical analysis. The main result states that all sparse vectors can be exactly 
recovered from compressive linear measurements in a number of iterations at most 
proportional to the sparsity level as soon as the measurement matrix obeys a certain 
restricted isometry condition. The recovery is also robust to measurement error. The 
same conclusions are derived for a variation of Hard Thresholding Pursuit, called 
Graded Hard Thresholding Pursuit, which is a natural companion to Orthogonal 
Matching Pursuit and runs without a prior estimation of the sparsity level. In 
addition, for two extreme cases of the vector shape, it is shown that, with high 
probability on the draw of random measurements, a fixed sparse vector is robustly 
recovered in a number of iterations precisely equal to the sparsity level. These 
theoretical findings are experimentally validated, too.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

This paper deals with the standard compressive sensing problem, i.e., the reconstruction of vectors 
x ∈ C

N from an incomplete set of m � N linear measurements organized in the form y = Ax ∈ C
m for 

some matrix A ∈ C
m×N . It is now well known that if x is s-sparse (i.e., has only s nonzero entries) and 

if A is a random matrix whose number m of rows scales like s times some logarithmic factors, then the 
reconstruction of x is achievable via a variety of methods. The �1-minimization is probably the most popular 
one, but simple iterative algorithms do provide alternative methods. We consider here the hard thresholding 
pursuit (HTP) algorithm [6] as well as a novel variation and we focus on the number of iterations needed 
for the reconstruction. This reconstruction is addressed in two settings:
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• An idealized situation, where the vectors x ∈ C
N are exactly sparse and where the measurements 

y ∈ C
m are exactly equal to Ax. In this case, the exact reconstruction of x ∈ C

N is targeted.
• A realistic situation, where the vectors x ∈ C

N are not exactly sparse and where the measurements 
y ∈ C

m contain errors e ∈ C
m, i.e., y = Ax + e. In this case, only an approximate reconstruction 

of x ∈ C
N is targeted. Precisely, the reconstruction error should be controlled by the sparsity defect 

and by the measurement error. The sparsity defect can be incorporated in the measurement error if 
y = Ax + e is rewritten as y = AxS + e′ where S is an index set of s largest absolute entries of x and 
e′ := AxS + e.

We shall mainly state and prove our results in the realistic situation. They specialize to the idealized situation 
simply by setting e′ = 0. In fact, setting e′ = 0 inside the proofs would simplify them considerably.

Let us now recall that (HTP) consists in constructing a sequence (xn) of s-sparse vectors, starting with 
an initial s-sparse x0 ∈ C

N — we take x0 = 0 — and iterating the scheme1

Sn := index set of s largest absolute entries of xn−1 + A∗(y − Axn−1), (HTP1)

xn := argmin{‖y − Az‖2, supp(z) ⊆ Sn}, (HTP2)

until a stopping criterion is met. It had been shown [10] that, in the idealized situation, exact reconstruction 
of every s-sparse x ∈ C

N is achieved in s iterations of (HTP) with y = Ax provided the coherence of the 
matrix A ∈ C

m×N satisfies μ < 1/(3s) (note that this condition can be fulfilled when m � s2). Exact and 
approximate reconstructions were treated in [6], where it was in particular shown that every s-sparse x ∈ C

N

is the limit of the sequence (xn) produced by (HTP) with y = Ax provided the 3sth restricted isometry 
constant of the measurement matrix A ∈ C

m×N obeys δ3s < 1/
√

3 ≈ 0.577 (note that this condition can 
be fulfilled when m � s ln(N/s)). As a reminder, the kth restricted isometry constant δk of A is defined as 
the smallest constant δ ≥ 0 such that

(1 − δ)‖z‖2
2 ≤ ‖Az‖2

2 ≤ (1 + δ)‖z‖2
2 for all k-sparse z ∈ C

N .

In fact, it was shown in [6] that the convergence is achieved in a finite number n̄ of iterations. In the idealized 
situation, it can be estimated as

n̄ ≤
⌈

ln(
√

2/3‖x‖2/ξ)
ln(1/ρ3s)

⌉
, ρ3s :=

√
2δ2

3s
1 − δ2

3s
< 1, ξ := min

j∈supp(x)
|xj |. (1)

This paper establishes that the number of iterations can be estimated independently of the shape of x: 
under a restricted isometry condition, it is at most proportional to the sparsity s, see Theorem 5 and a 
robust version in Theorem 6. This is reminiscent of the work of T. Zhang [15] on orthogonal matching 
pursuit (OMP), see also [7, Theorem 6.25] where it is proved that n̄ ≤ 12s provided that δ13s < 1/6.

However, (HTP) presents a significant drawback in that a prior estimation of the sparsity s is required 
to run the algorithm, while (OMP) does not (although stopping (OMP) at iteration 12s does require this 
estimation). We therefore consider a variation of (HTP) avoiding the prior estimation of s. We call it 
graded hard thresholding pursuit (GHTP) algorithm, because the index set has a size that increases with 
the iteration. Precisely, starting with x0 = 0, a sequence (xn) of n-sparse vectors is constructed according 
to

1 Exact arithmetic is assumed and, among several candidates for the index set of largest absolute entries, the smallest one in 
lexicographic order is always chosen.
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