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In this paper, we recover sparse signals from their noisy linear measurements by 
solving nonlinear differential inclusions, which is based on the notion of inverse scale 
space (ISS) developed in applied mathematics. Our goal here is to bring this idea to 
address a challenging problem in statistics, i.e. finding the oracle estimator which 
is unbiased and sign consistent using dynamics. We call our dynamics Bregman ISS
and Linearized Bregman ISS. A well-known shortcoming of LASSO and any convex 
regularization approaches lies in the bias of estimators. However, we show that 
under proper conditions, there exists a bias-free and sign-consistent point on the 
solution paths of such dynamics, which corresponds to a signal that is the unbiased 
estimate of the true signal and whose entries have the same signs as those of the true 
signs, i.e. the oracle estimator. Therefore, their solution paths are regularization 
paths better than the LASSO regularization path, since the points on the latter 
path are biased when sign-consistency is reached. We also show how to efficiently 
compute their solution paths in both continuous and discretized settings: the full 
solution paths can be exactly computed piece by piece, and a discretization leads to 
Linearized Bregman iteration, which is a simple iterative thresholding rule and easy 
to parallelize. Theoretical guarantees such as sign-consistency and minimax optimal 
l2-error bounds are established in both continuous and discrete settings for specific 
points on the paths. Early-stopping rules for identifying these points are given. The 
key treatment relies on the development of differential inequalities for differential 
inclusions and their discretizations, which extends the previous results and leads to 
exponentially fast recovering of sparse signals before selecting wrong ones.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

We study a dynamic approach to recover a sparse signal β∗ ∈ R
p from its noisy linear measure-

ments

* Corresponding author. Fax: +1 310 206 6673 (c/o S. Osher).
E-mail addresses: sjo@math.ucla.edu (S. Osher), fengruan@stanford.edu (F. Ruan), xiongjiechao@pku.edu.cn (J. Xiong), 

yuany@math.pku.edu.cn (Y. Yao), wotaoyin@math.ucla.edu (W. Yin).
URL: http://www.math.pku.edu.cn/teachers/yaoy/ (Y. Yao).

http://dx.doi.org/10.1016/j.acha.2016.01.002
1063-5203/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.acha.2016.01.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/acha
mailto:sjo@math.ucla.edu
mailto:fengruan@stanford.edu
mailto:xiongjiechao@pku.edu.cn
mailto:yuany@math.pku.edu.cn
mailto:wotaoyin@math.ucla.edu
http://www.math.pku.edu.cn/teachers/yaoy/
http://dx.doi.org/10.1016/j.acha.2016.01.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.acha.2016.01.002&domain=pdf


S. Osher et al. / Appl. Comput. Harmon. Anal. 41 (2016) 436–469 437

y = Xβ∗ + ε. (1.1)

Here, y ∈ R
n is a measurement vector, X = [x1, . . . , xp] ∈ R

n×p is a measurement matrix, and 
ε ∼ N (0, σ2In) is Gaussian noise. We allow n < p and assume that β∗ has s ≤ min{n, p} nonzero compo-
nents. For convenience, let S = supp(β∗) and T be its complement, i.e. T = {i : β∗

i = 0}. XS denotes the 
submatrix of X formed by the columns of X in S, which are assumed to be linearly independent. Similarly 
define XT so that [XS XT ] = X.

Such a problem has been widely studied in applied mathematics [12], engineering, and statistics [36], 
see for example surveys in [22,13]. In these works, convex regularization or relaxation approach has been 
exploited to overcome the combinatorial explosion of searching the best sparse signals using subset least 
squares. However, it has been known since [25] that all convex regularization approaches lead to biased 
estimators whose expectation does not meet the true signal, which motivates the exploration of using 
non-convex regularization yet it may suffer from a computational hurdle of locating the global optima 
[27,29].

To address this dilemma between statistical accuracy and computational hurdle, in this paper we in-
troduce some dynamics from the Inverse Scale Space (ISS) method, which first appeared in the image 
restoration literature in [6,3,7,2,8] and analyzed and implemented carefully in [5]. The name refers to the 
observation there that large-scale (image) features are recovered before small-scale ones. Our goal here is 
to show that such dynamics provides a surprisingly simple way to statistically accurate (unbiased and sign-
consistent) estimator if equipped with a new type regularization – early stopping. Our results also extend 
those early error analysis on ISS to statistical consistency, establishing model selection consistency as well 
as minimax optimal l2 error bounds under comparable conditions to LASSO, etc.

The first one, called Bregman ISS here, is given by the nonlinear differential inclusions:

ρ̇t = 1
n
XT (y −Xβt), (1.2a)

ρt ∈ ∂‖βt‖1, (1.2b)

where t ≥ 0 is time, ρt ∈ R
p is assumed to be right continuously differentiable in t, ρ̇t is the right derivative 

of ρt, and βt is assumed to be right continuous. The inclusion condition (1.2b) restricts ρt to a subgradient 
of �1-norm at βt, t ≥ 0. The initial conditions are, typically, ρ0 = 0 and β0 = 0. As it evolves, the component 
which reaches |ρt(i)| = 1 enters into our selection βt(i) �= 0. Hence roughly speaking, the larger magnitude 
XT

i (y − Xβt) has, the faster the component is selected. In the ideal case, we hope the signals in S are 
selected faster than non-signals in T , whose conditions will be our main concern in this paper. Under 
general conditions, we will see that a solution to (1.2) exists and both ρt and Xβt, t ≥ 0, are unique. In 
addition, ρt is piece-wise linear, and there exists a solution path βt that is piece-wise constant. The entire 
path can be computed at finitely many break points.

A damping version of the first one, called Linearized Bregman ISS, has its solution path {ρt, βt}t≥0
governed by the nonlinear differential inclusions:

ρ̇t + 1
κ
β̇t = 1

n
XT (y −Xβt), (1.3a)

ρt ∈ ∂‖βt‖1, (1.3b)

where κ > 0 is a constant. Compared to (1.2a), equation (1.3a) has the additional term 1
κ β̇. As κ → ∞, 

(1.3) is reduced to (1.2), and the solution path of (1.3) may converge to that of (1.2) exponentially fast as 
κ increases. We will see that (1.3) has a unique solution path ρt and βt, t ≥ 0, which are both continuous 
for all κ > 0. Alternatively, (1.3) can be obtained as a differential inclusion replacing the l1-norm in (1.2b)
by the Elastic Net [44] penalty ‖βt‖1 + 1

κ‖βt‖2
2 which will be discussed later.
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