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1. Introduction

Digital processing of signals f may start from sampling on a discrete set T,

F s (Fm))., e (L.1)

[5,32,42.43]. The celebrated Whittaker—Shannon—Kotelnikov sampling theorem states that a bandlimited
signal can be recovered from its samples taken at a rate greater than twice the bandwidth [32,45]. In
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the last two decades, that paradigm for bandlimited signals has been extended to represent signals in
a shift-invariant space [5,7,42], signals with finite rate of innovation [13,28,31,34,36,43|, and signals in a
reproducing kernel space [11,19,24,29,30].

A fundamental problem in sampling theory is how to obtain a good approximation of the signal f when
only the noisy sampling data (f(v,) + e(vn))% cr is available [3,5,34,42]. The above problem is well studied
and many algorithms, such as the frame algorithm and the approximation-projection algorithm, have been
proposed [4,12,14,17,29,34,38]. In this paper, we introduce a Galerkin method for signal reconstruction and
we propose a fast and stable algorithm to solve the corresponding Galerkin equations.

A conventional way to reconstruct signals f in a linear space V from their sampling data is to solve a
minimization problem

Rf :=argmin ||h — f]|, (1.2)
hev

where the fidelity measure ||h — f|| depends only on the sampling data of h — f on T'. Typical examples of
fidelity measures in the bandlimited setting are weighted sampling energy Z% cr Walf(7n) — h(v,)]? and
weighted pre-reconstruction energy || >° . wn(f(vn) —h(¥n))sine(- —75)||2, where w,, are positive weights
appropriately selected.

The fidelity of perceptual signals, such as acoustic and visual signals, might not be well measured

by some weighted square errors [10,44]. Alternatives of fidelity measures are weighted sampling error
1

( >ner Walf(m) = h(m) [P)» and weighted pre-reconstruction error || > er Wl () = () K (-, 7) llps
1 < p < oo, for signals in a reproducing kernel subspace of L? := LP(R%) with kernel K. In this paper, we

introduce a general fidelity measurement associated with a linear operator S on a Banach space V, that
depends on the sampling scheme (1.1). Then the minimization problem (1.2) becomes

Rf :=argmin||Sh — Sf|v. (1.3)
hev
The operator S in the above minimization problem can be selected as

Sf = Z wnf(Vn)SinC(' - ’Vn)

Yn €D

for the bandlimited setting, and

Sf = Z Wa f (70 ) K (5 vn)

Yn €L

for the reproducing kernel space setting.
The nonlinear minimization problem (1.3) does not give a tractable signal reconstruction. Observe that

ISh—Sfllv = sup  |(Sh—Sf.g)l,

lgllv+=1,geV*

where (-, -) is the standard dual product between elements in V and its dual V*. So we propose the following
linear approach

(Sh,g) = (Sf,g) for allgeU, (1.4)

where U C V* is a (finite-dimensional) trial space. Clearly, the solution of the Galerkin equations (1.4) with
U = V* is also a solution of the minimization problem (1.3).
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