Contents lists available at ScienceDirect

Applied and Computational Harmonic Analysis

www.elsevier.com/locate/acha

Sampling and Galerkin reconstruction in reproducing kernel spaces

Cheng Cheng^a, Yingchun Jiang^{b,*}, Qiyu Sun^a

^a Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA
 ^b School of Mathematics and Computational Science, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China

ARTICLE INFO

Article history: Received 4 October 2014 Received in revised form 21 December 2015 Accepted 30 December 2015 Available online 6 January 2016 Communicated by Spec. Issue Guest Editor

MSC: 94A20 46E22 65J22

Keywords: Sampling Galerkin reconstruction Oblique projection Reproducing kernel space Finite rate of innovation Iterative approximation-projection algorithm

1. Introduction

Digital processing of signals f may start from sampling on a discrete set Γ ,

$$f \longmapsto \left(f(\gamma_n) \right)_{\gamma_n \in \Gamma} \tag{1.1}$$

[5,32,42,43]. The celebrated Whittaker–Shannon–Kotelnikov sampling theorem states that a bandlimited signal can be recovered from its samples taken at a rate greater than twice the bandwidth [32,45]. In

* Corresponding author.

http://dx.doi.org/10.1016/j.acha.2015.12.007 1063-5203/© 2016 Elsevier Inc. All rights reserved.

ABSTRACT

In this paper, we introduce a fidelity measure depending on a given sampling scheme and we propose a Galerkin method in Banach space setting for signal reconstruction. We show that the proposed Galerkin method provides a quasi-optimal approximation, and the corresponding Galerkin equations could be solved by an iterative approximation-projection algorithm in a reproducing kernel subspace of L^p . Also we present detailed analysis and numerical simulations of the Galerkin method for reconstructing signals with finite rate of innovation.

© 2016 Elsevier Inc. All rights reserved.

E-mail addresses: cheng.cheng@knights.ucf.edu (C. Cheng), guilinjiang@126.com (Y. Jiang), qiyu.sun@ucf.edu (Q. Sun).

the last two decades, that paradigm for bandlimited signals has been extended to represent signals in a shift-invariant space [5,7,42], signals with finite rate of innovation [13,28,31,34,36,43], and signals in a reproducing kernel space [11,19,24,29,30].

A fundamental problem in sampling theory is how to obtain a good approximation of the signal f when only the noisy sampling data $(f(\gamma_n) + \epsilon(\gamma_n))_{\gamma_n \in \Gamma}$ is available [3,5,34,42]. The above problem is well studied and many algorithms, such as the frame algorithm and the approximation-projection algorithm, have been proposed [4,12,14,17,29,34,38]. In this paper, we introduce a Galerkin method for signal reconstruction and we propose a fast and stable algorithm to solve the corresponding Galerkin equations.

A conventional way to reconstruct signals f in a linear space V from their sampling data is to solve a minimization problem

$$Rf := \underset{h \in V}{\operatorname{argmin}} \|h - f\|, \tag{1.2}$$

where the fidelity measure ||h - f|| depends only on the sampling data of h - f on Γ . Typical examples of fidelity measures in the bandlimited setting are weighted sampling energy $\sum_{\gamma_n \in \Gamma} w_n |f(\gamma_n) - h(\gamma_n)|^2$ and weighted pre-reconstruction energy $\|\sum_{\gamma_n \in \Gamma} w_n (f(\gamma_n) - h(\gamma_n)) \operatorname{sinc}(\cdot - \gamma_n)\|_2$, where w_n are positive weights appropriately selected.

The fidelity of perceptual signals, such as acoustic and visual signals, might not be well measured by some weighted square errors [10,44]. Alternatives of fidelity measures are weighted sampling error $\left(\sum_{\gamma_n \in \Gamma} w_n |f(\gamma_n) - h(\gamma_n)|^p\right)^{\frac{1}{p}}$ and weighted pre-reconstruction error $\|\sum_{\gamma_n \in \Gamma} w_n(f(\gamma_n) - h(\gamma_n))K(\cdot, \gamma_n)\|_p$, $1 \leq p < \infty$, for signals in a reproducing kernel subspace of $L^p := L^p(\mathbf{R}^d)$ with kernel K. In this paper, we introduce a general fidelity measurement associated with a linear operator S on a Banach space V, that depends on the sampling scheme (1.1). Then the minimization problem (1.2) becomes

$$Rf := \underset{h \in V}{\operatorname{argmin}} \|Sh - Sf\|_V.$$
(1.3)

The operator S in the above minimization problem can be selected as

$$Sf := \sum_{\gamma_n \in \Gamma} w_n f(\gamma_n) \operatorname{sinc}(\cdot - \gamma_n)$$

for the bandlimited setting, and

$$Sf := \sum_{\gamma_n \in \Gamma} w_n f(\gamma_n) K(\cdot, \gamma_n)$$

for the reproducing kernel space setting.

The nonlinear minimization problem (1.3) does not give a tractable signal reconstruction. Observe that

$$||Sh - Sf||_{V} = \sup_{||g||_{V^*} = 1, g \in V^*} |\langle Sh - Sf, g \rangle|,$$

where $\langle \cdot, \cdot \rangle$ is the standard dual product between elements in V and its dual V^{*}. So we propose the following linear approach

$$\langle Sh, g \rangle = \langle Sf, g \rangle$$
 for all $g \in \tilde{U}$, (1.4)

where $\tilde{U} \subset V^*$ is a (finite-dimensional) trial space. Clearly, the solution of the Galerkin equations (1.4) with $\tilde{U} = V^*$ is also a solution of the minimization problem (1.3).

Download English Version:

https://daneshyari.com/en/article/4604975

Download Persian Version:

https://daneshyari.com/article/4604975

Daneshyari.com