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The many variants of the restricted isometry property (RIP) have proven to 
be crucial theoretical tools in the fields of compressed sensing and matrix 
completion. The study of extending compressed sensing to accommodate phaseless 
measurements naturally motivates a strong notion of restricted isometry property 
(SRIP), which we develop in this paper. We show that if A ∈ Rm×n satisfies 
SRIP and phaseless measurements |Ax0| = b are observed about a k-sparse signal 
x0 ∈ Rn, then minimizing the �1 norm subject to |Ax| = b recovers x0 up to 
multiplication by a global sign. Moreover, we establish that the SRIP holds for the 
random Gaussian matrices typically used for standard compressed sensing, implying 
that phaseless compressed sensing is possible from O(k log(en/k)) measurements 
with these matrices via �1 minimization over |Ax| = b. Our analysis also yields an 
erasure robust version of the Johnson–Lindenstrauss Lemma.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The restricted isometry property (RIP), first introduced by Candès and Tao [5], is one of the most 
commonly used tools in the study of sparse/low rank signal recovery problem. The RIP also has some 
connections to the Johnson–Lindenstrauss Lemma and its study has lead to new results about the lemma 
[4,14]. The aim of this paper is to present a strong restricted isometry property which naturally occurs when 
considering phaseless compressed sensing.

Given a vector x0 ∈ R
n and a collection of phaseless measurements bj = |〈aj , x0〉|, j = 1, 2, . . . , m where 

aj ∈ R
n, phase retrieval consists of recovering x0 up to a global sign, which has attracted much attention in 
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recent years (cf. [1,2,8,9]). It has been established that the PhaseLift algorithm allows for stable and efficient 
phase retrieval of an arbitrary signal x0 ∈ C

n from O(n) measurements via semi-definite programming [8].
In practice, signals of interest are often sparse in some basis and in particular this occurs in some regimes 

of X-ray crystallography. It is natural to exploit this sparsity structure to minimize the number of measure-
ments needed for recovery since measurement acquisition is expensive and can destroy the sample at hand. 
We define phaseless compressed sensing (PCS) as the problem of recovering a sparse signal from few such 
phaseless measurements. It was shown in [15] that a k-sparse signal x0 can be recovered from O(k2 log n)
phaseless measurements via convex programming. Surprisingly, and in contrast to the case of compressed 
sensing from linear measurements, it was also established in [15] that the natural information theoretic 
lower-bound of O(k log n) measurements cannot be achieved using a naive semi-definite programming re-
laxation.

Meanwhile, phaseless measurements are generically injective modulo phase over k-sparse signals as soon 
as the over-sampling factor is 2 [15,21]. Thus, the combinatorially hard problem of finding

argmin
x∈Rn

{‖x‖0 subject to |〈aj , x〉| = |〈aj , x0〉|, j = 1, . . . ,m} (1.1)

yields x0 modulo phase for m ≥ 2k−1 and aj generic (see [21]). Moreover, O(k log(en/k)) random Gaussian 
phaseless measurements separate signals well [19]. While minimizing sparsity in the O(k log(en/k)) mea-
surement regime is not clearly amenable to efficient algorithmic recovery, numerical experiments show that 
using a convex relaxation of the �0 “norm” is often exact [18,20,22]. We study here such a relaxation:

x̂ := argmin
x∈Rn

{‖x‖1 subject to |〈aj , x〉| = |〈aj , x0〉|, j = 1, . . . ,m}. (1.2)

In this paper, we focus on the case where x0 ∈ R
n is a k-sparse real signal and A = [a1, . . . , am]� ∈

R
m×n. Particularly, we show that (1.1) is equivalent to (1.2) provided that the matrix A satisfies the 

strong restricted isometry property. We furthermore show that a random m × n Gaussian matrix with 
m = O(k log(en/k)) satisfies the strong restricted isometry property of order k with high probability. And 
hence, the �1 relaxation is exact with high probability with O(k log(en/k)) Gaussian measurements, just as 
in traditional compressed sensing. While the constraint set of our relaxation is non-convex, this formulation 
is more amenable to algorithmic recovery, and has been studied in [18,20,22] with demonstrated empirical 
success of the proposed projection algorithms. Finally, we would like to point out that all the results above 
are over R. The extension of these results to hold over C cannot follow the same line of reasoning and is the 
subject of future work.

The paper is organized as follows. In Section 2, we introduce the definition of strong restricted isometry 
property (SRIP) and show that if a matrix A satisfies SRIP, then (1.1) is equivalent to (1.2). Then, we 
show that m × n random Gaussian matrices typically used for linear compressed sensing, also satisfy the 
SRIP with high probability, which establishes the exactness of the �1 relaxation for m = O(k log(en/k))
phaseless measurements. Section 3 provides some technical necessities. We present a strong version of the 
concentration of measure inequality in Section 4 which plays an important role in proving the main results 
of Section 2. Using this inequality, we derive a strong J–L Lemma which states that we get a dimensionality 
reduction of a set of points in Euclidean space with some distance distortion such that erasing a positive 
fraction of the coordinates of the reduction maintains to a certain degree the approximate distance preserving 
J–L property. This can be interpreted as an erasure robust version of the J–L Lemma. We present the proofs 
of the main results in Section 5 and finally give some future research directions in Section 6.
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