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In this paper, we establish the following perturbation result concerning the singular 
values of a matrix: Let A, B ∈ R

m×n be given matrices, and let f : R+ → R+ be a 
concave function satisfying f(0) = 0. Then, we have

min{m,n}∑
i=1

∣∣f(σi(A)) − f(σi(B))
∣∣ ≤ min{m,n}∑

i=1
f(σi(A−B)),

where σi(·) denotes the i-th largest singular value of a matrix. This answers an 
open question that is of interest to both the compressive sensing and linear algebra 
communities. In particular, by taking f(·) = (·)p for any p ∈ (0, 1], we obtain a 
perturbation inequality for the so-called Schatten p-quasi-norm, which allows us to 
confirm the validity of a number of previously conjectured conditions for the recovery 
of low-rank matrices via the popular Schatten p-quasi-norm heuristic. We believe 
that our result will find further applications, especially in the study of low-rank 
matrix recovery.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The problem of low-rank matrix recovery, with its many applications in computer vision [12,20], trace 
regression [31,23], network localization [19,21], etc., has been attracting intense research interest in recent 
years. In a basic version of the problem, the goal is to reconstruct a low-rank matrix from a set of possibly 
noisy linear measurements. To achieve this, one immediate idea is to formulate the recovery problem as a 
rank minimization problem:
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minimize rank(X)
subject to ‖A(X) − y‖2 ≤ η, X ∈ R

m×n, (1)

where the linear measurement map A : Rm×n → R
l, the vector of measurements y ∈ R

l, and the noise level 
η ≥ 0 are given. However, Problem (1) is NP-hard in general, as it includes the NP-hard vector cardinality 
minimization problem [30] as a special case. Moreover, since the rank function is discontinuous, Problem (1)
can be challenging from a computational point-of-view. To circumvent this intractability, a popular approach 
is to replace the objective of (1) with the so-called Schatten (quasi)-norm of X. Specifically, given a matrix 
X ∈ R

m×n and a number p ∈ (0, 1], let σi(X) denote the i-th largest singular value of X and define the 
Schatten p-quasi-norm of X by

‖X‖p =

⎛
⎝min{m,n}∑

i=1
σp
i (X)

⎞
⎠

1/p

.

One can then consider the following Schatten p-quasi-norm heuristic for low-rank matrix recovery:

minimize ‖X‖pp
subject to ‖A(X) − y‖2 ≤ η, X ∈ R

m×n. (2)

Note that the function X �→ ‖X‖pp is continuous for each p ∈ (0, 1]. Thus, algorithmic techniques for 
continuous optimization can be used to tackle Problem (2). The Schatten quasi-norm heuristic is motivated 
by the observation that ‖X‖pp → rank(X) as p ↘ 0. In particular, when p = 1, the function X �→ ‖X‖1
defines a norm—known as the nuclear norm—on the set of m × n matrices, and we obtain the well-known 
nuclear norm heuristic [13]. In this case, Problem (2) is a convex optimization problem that can be solved 
efficiently by various algorithms; see, e.g., [18] and the references therein. On the other hand, when p ∈ (0, 1), 
the function X �→ ‖X‖p only defines a quasi-norm. In this case, Problem (2) is a non-convex optimization 
problem and is NP-hard in general; cf. [16]. Nevertheless, a number of numerical algorithms implementing 
the Schatten p-quasi-norm heuristic (where p ∈ (0, 1)) have been developed (see, e.g., [28,32,21,26] and 
the references therein), and they generally have better empirical recovery performance than the (convex) 
nuclear norm heuristic.

From a theoretical perspective, a natural and fundamental question concerning the aforementioned heuris-
tics is about their recovery properties. Roughly speaking, this entails determining the conditions under which 
a given heuristic can recover, either exactly or approximately, a solution to Problem (1). A first study in 
this direction was done by Recht, Fazel, and Parrilo [35], who showed that techniques used to analyze 
the �1 heuristic for sparse vector recovery (see [40] for an overview and further pointers to the literature) 
can be extended to analyze the nuclear norm heuristic. Since then, recovery conditions based on the re-
stricted isometry property (RIP) and various nullspace properties have been established for the nuclear 
norm heuristic; see, e.g., [33,7,6,22] for some recent results. In fact, many recovery conditions for the nuclear 
norm heuristic can be derived in a rather simple fashion from their counterparts for the �1 heuristic by 
utilizing a perturbation inequality for the nuclear norm [33].

Compared with the nuclear norm heuristic, recovery properties of the Schatten p-quasi-norm heuristic 
are much less understood, even though the corresponding heuristic for sparse vector recovery, namely the 
�p heuristic with p ∈ (0, 1), has been extensively studied; see, e.g., [42,44,34,43] and the references therein. 
As first pointed out in [33] and later further elaborated in [25], the difficulty seems to center around 
the following question, which concerns the validity of certain perturbation inequality for the Schatten 
p-quasi-norm:

Question (Q). Given a number p ∈ (0, 1) and matrices A, B ∈ R
m×n, does the inequality
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