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Matrix completion involves recovering a matrix from a subset of its entries by 
utilizing interdependency between the entries, typically through low rank structure. 
Despite matrix completion requiring the global solution of a non-convex objective, 
there are many computationally efficient algorithms which are effective for a 
broad class of matrices. In this paper, we introduce an alternating steepest 
descent algorithm (ASD) and a scaled variant, ScaledASD, for the fixed-rank 
matrix completion problem. Empirical evaluation of ASD and ScaledASD on both 
image inpainting and random problems show they are competitive with other 
state-of-the-art matrix completion algorithms in terms of recoverable rank and 
overall computational time. In particular, their low per iteration computational 
complexity makes ASD and ScaledASD efficient for large size problems, especially 
when computing the solutions to moderate accuracy such as in the presence of 
model misfit, noise, and/or as an initialization strategy for higher order methods. 
A preliminary convergence analysis is also presented.

Crown Copyright © 2015 Published by Elsevier Inc. All rights reserved.

1. Introduction

The problem of recovering a low rank matrix from partial entries – also known as matrix completion 
– arises in a wide variety of practical contexts, such as model reduction [17], pattern recognition [8], and 
machine learning [1,2]. From the pioneering work on low rank approximation by Fazel [10] and matrix 
completion by Candès and Recht [6], this problem has received intensive investigations both from theoretical 
and algorithmic aspects, see [3–5,7,12,14,16,18–21,23–25] and references therein for a partial review. These 
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matrix completion and low rank approximation techniques rely on the dependencies between entries imposed 
by the low rank structure. Explicitly seeking the lowest rank matrix consistent with the known entries is 
expressed as

min
Z∈Rm×n

rank(Z), subject to PΩ(Z) = PΩ(Z0), (1)

where Z0 ∈ R
m×n is the underlying matrix to be reconstructed, Ω is a subset of indices for the known entries, 

and PΩ is the associated sampling operator which acquires only the entries indexed by Ω. Problem (1) is 
non-convex and generally NP-hard [13] due to the rank objective. One of the most widely studied approaches 
is to replace the rank objective in (1) with its convex relaxation, the Schatten 1-norm (also known as 
nuclear norm) which is the sum of the singular values, i.e. min

Z∈Rm×n
‖Z‖∗, subject to PΩ(Z) = PΩ(Z0). 

It has been proven that, provided the singular vectors are weakly correlated with the canonical basis, 
the solution of (1) can be obtained by solving the aforementioned convex relaxation [6]. Alternative to 
the convex relaxation, there have been many algorithms which are designed to attempt to solve for the 
global minima of (1) directly; many of them are adaptations of algorithms for compressed sensing, such 
as the hard thresholding algorithms [3,14,16,21]. The iterative thresholding algorithms typically update 
a current rank r estimate along a line-search direction which departs the manifold of rank r matrices, 
and then projects back to the rank r manifold by computing the nearest matrix in Frobenius norm. The 
most direct implementation of these algorithms require computing a partial singular value decomposition 
(SVD) in each iteration. The computational complexity of computing the SVD has complexity of O(n3)
when r, m and n are proportional, causing computing the SVD to be the dominant computational cost per 
iteration and limits their applicability for large n. A subclass of methods which further exploit the manifold 
structure in their line-search updates achieve superior efficiency, for r � n, of order O(r3). Examples 
include LRGeomCG [23] which is a nonlinear conjugate gradient method, ScGrassMC [20] which uses a 
scaled gradient in the subspace update, and the algorithms presented in [18,19] which use other geometries 
and metrics.

To circumvent the high computational cost of an SVD, other algorithms explicitly remain on the manifold 
of rank r matrices by using the factorization Z = XY where X ∈ R

m×r and Y ∈ R
r×n. Based on this 

simple factorization model, rather than solving (1), algorithms are designed to solve the non-convex problem 
min
X,Y

f(X, Y ) where

f(X,Y ) := 1
2‖PΩ(Z0) − PΩ(XY )‖2

F . (2)

Algorithms for the solution of (2) usually follow an alternating minimization scheme, with PowerFactoriza-
tion [12] and LMaFit [24] two representatives. We present alternating steepest descent (ASD), and a scaled 
variant ScaledASD, which incorporate an exact line-search to update the solutions for the model (2). In 
so doing ASD and ScaledASD have a lower per iteration complexity than PowerFactorization, allowing a 
more efficient exploration of the manifold in the early iterations where the current estimate is inaccurate. 
Moreover, ASD and ScaledASD are able to recover matrices of substantially higher rank than can LMaFit.

The manuscript is outlined as follows. In Section 2 we briefly review the alternating minimization algo-
rithms PowerFactorization and LMaFit which motivate ASD. In Section 3 we propose ASD for (2), which 
replaces the least square subproblem solution in PowerFactorization with exact line-search so as to reduce 
the per iteration computational cost. In Section 4 we present ScaledASD, a version of ASD which is acceler-
ated by scaling the search directions adaptively to improve the asymptotic convergence rate. A preliminary 
convergence analysis for ASD and ScaledASD are given in Section 3 and Section 4 respectively. Numerical 
experiments presented in Section 5 contrast the aforementioned algorithms and show that ScaledASD is 
highly efficient, particularly for large problems when solved to moderate accuracy.
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