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An interesting topic in compressed sensing aims to recover signals with sparse
representations in a dictionary. Recently the performance of the �1-analysis method
has been a focus, while some fundamental problems for the �1-synthesis method
are still unsolved. For example, what are the conditions for it to stably recover
compressible signals under noise? Do coherent dictionaries allow the existence of
sensing matrices that guarantee good performances of the �1-synthesis method?
To answer these questions, we build up a framework for the �1-synthesis method.
In particular, we propose a dictionary-based null space property (D-NSP) which,
to the best of our knowledge, is the first sufficient and necessary condition for the
success of �1-synthesis without measurement noise. With this new property, we show
that when the dictionary D is full spark, it cannot be too coherent otherwise the
�1-synthesis method fails for all sensing matrices. We also prove that in the real
case, D-NSP is equivalent to the stability of �1-synthesis under noise.

Published by Elsevier Inc.

1. Introduction

Compressed sensing addresses the problem of recovering a sparse signal z0 ∈ F
d (F = C or R) from its

undersampled and corrupted linear measurements y = Az0 +w ∈ F
m, where w is the noise vector such that

‖w‖2 � ε. The number of measurements m is usually much smaller than the ambient dimension d, which
makes the problem ill-posed in general. A vector is said to be s-sparse if it has at most s nonzero entries.
The sparsity of z0 makes the reconstruction possible. The following optimization algorithm, also known as
Basis Pursuit, can reconstruct z0 efficiently from the perturbed observation y [5,15]:

ẑ = arg min
z∈Fd

‖z‖1, s.t. ‖y − Az‖2 � ε. (1)

A primary task of compressed sensing is to choose appropriate sensing matrix A in order to achieve good
performance of (1). Candes and Tao proposed the restricted isometry property (RIP), and show that it
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provides stable reconstruction of approximately sparse signals via (1) [7]. Moreover, many random matrices
satisfy RIP with high probability [6,25].

Another well-known condition on the measurement matrix is the null space property. A matrix A is said
to have the Null Space Property of order s (s-NSP) if

∀v ∈ kerA\{0}, ∀|T | � s, ‖vT ‖1 < ‖vT c‖1, (2)

where |T | is the cardinality for the index set T ⊂ {1, 2, . . . , d}, T c is its complementary index set and vT

is the restriction of v on T . NSP is known to characterize the exact reconstruction of all s-sparse vectors
via (1) when there is no noise (ε = 0) [13,16]. It has also been proven that the NSP matrices admit a similar
stability result as RIP except that the constants may be larger [2,27].

In all of the above discussions, it is assumed that the signal z0 is sparse with respect to an orthonormal
basis. A recent direction of interest in compressed sensing concerns problems where signals are sparse in an
overcomplete dictionary D instead of a basis, see [24,4,21,2,11]. Here D is a d× n matrix with full column
rank. We also call D a frame in the sense that the columns of D form a finite frame. A finite frame for F

d

is a finite collection of vectors that span F
d. We refer interested readers to [8] for a background on frame

theory.
In this setting, the signal z0 ∈ F

d can be represented as z0 = Dx0, where x0 is an s-sparse vector
in F

n. We refer to such signals as dictionary-sparse signals or frame-sparse signals. When the dictionary
D is specified, we also call them D-sparse signals. We refer to the problem of recovering such z0 from the
linear measurement y = Az0 as dictionary-based compressed sensing, and the ordinary compressed sensing
problem as basis-based compressed sensing.

A natural way to obtain a good approximation ẑ of z0 is to use the following approach

(PD) x̂ = arg min ‖x‖1 s.t. ADx = y, (3)

ẑ = Dx̂. (4)

The above method is called the �1-synthesis or synthesis based method [21,24] due to the second synthesizing
step. In the case when the measurements are perturbed, we naturally solve the following:

(PD,ε) x̂ = arg min ‖x‖1 s.t. ‖ADx − y‖2 � ε,

ẑ = Dx̂.

The frame-based compressed sensing is motivated by the widespread use of overcomplete dictionaries
and frames in signal processing and data analysis. Many signals naturally possess sparse frame coefficients,
such as radar images (Gabor frames [23,17,26]), cartoon like images (curvelets [20]), images with direc-
tional features (shearlets [19]), etc. Other useful frames include wavelet frames [12] and harmonic frames.
If the underlying frame is unknown but training data is available, the frame may also be constructed or
approximated by learning. The greater flexibility and stability of frames make them preferable for practical
purposes to achieve greater accuracy under imperfect measurements.

Despite the countless applications of frame-sparse signals, the compressed sensing literature is still lacking
on this subject, especially on the issue whether the frame D can be allowed to be highly coherent or not.
Coherence is a quantity that measures the correlation between frame vectors. When all the columns {dj}
of D are normalized, its coherence is defined as

μ(D) = max
i�=j

∣∣〈di,dj〉
∣∣.

A highly coherent D is a frame with big coherence.
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