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the maximal embedding dimension of M. We show that the maximal embedding
dimension of M is bounded from above by a constant depending only on the
dimension of M, a lower bound for injectivity radius, a lower bound for Ricci
curvature, and a volume bound. We interpret this result for the case of surfaces
isometrically immersed in R3, showing that the maximal embedding dimension only
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1. Introduction

Let M = (M, g) be a closed (compact, without boundary), connected Riemannian manifold; we assume
both M and g are smooth. The Laplacian of M is a differential operator given by A := —div o grad, where
div and grad are the Riemannian divergence and gradient, respectively. Since M is compact and connected,
A has a discrete spectrum {\;}jen, 0= Ao < A1 < A2 < --- T 0o. We may choose an orthonormal basis for
L?(M) of eigenfunctions {¢;}jen of A, where Ap; = \jp;, p; € C®(M), po = V(M)~/2. Here, V(M)
denotes the volume of M with respect to the canonical Riemannian measure V' = V(5 ).

We consider maps of the form

om M — R™

T {on(x)}1<jgm' (1)
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If @™ : M — R™ happens to be a smooth embedding, then we call it an m-dimensional eigenfunction
embedding of M. The smallest number m for which ¢™ is an embedding for some choice of basis {¢;};en
will herein be called the embedding dimension of M, and the smallest number m for which @™ is an
embedding for every choice of basis {¢;};en will be called the mazimal embedding dimension of M. Our
aim is to establish a (qualitative) bound for the maximal embedding dimension of a given Riemannian
manifold in terms of basic geometric data.

That finite eigenfunction maps of the form (1) yield smooth embeddings for large enough m appears in
a few papers in the spectral geometry literature. Abdallah [1] traces this fact back to Bérard [2]. To our
knowledge, the latest embedding result is given in Theorem 1.3 in Abdallah [1], who shows that when
(M, g(t)) is a family of Riemannian manifolds with g(¢) analytic in a neighborhood of ¢ = 0, then there are
€ >0, m €N, and eigenfunctions {©; () }1<j<m of Ay such that

(M, g(t)) — R™

T {‘Pj(‘fmt)}lgjgm (2>

is an embedding for all ¢t € (—e, €). The proof does not suggest how topology and geometry determine the
embedding dimension, however.

Jones, Maggioni, and Schul [3,4] have studied local properties of eigenfunction maps, and their results
are essential to the proof of our main result. In particular, they show that at z € M, for an appropriate
choice of weights a1, ...,a, € R and eigenfunctions ¢;,, ..., ¢, , one has a coordinate chart (U, $,) around
z € M, where @, (z) := (a19j,(x), ..., anp;, (x)), satistying ||Pq(z) — Pu(y)]

rn ~ dy(z,y) for all z,y € U.
A more explicit statement of this result is given below.

Minor variants of such eigenfunction maps have been used in a variety of contexts. For example, spectral
embeddings

M — *
T — {e—Ajt/2(pj(x)}j€N (t>0) (3)

have been used to embed closed Riemannian manifolds into the Hilbert space ¢? (i.e. square summable
sequences with the usual inner product) in Bérard, Besson, and Gallot [5,6]; Fukaya [7]; Kasue and Kumura,
e.g. [8,9]; Kasue, Kumura, and Ogura [10]; Kasue, e.g. [11,12]; and Abdallah [1].

Relatives of the eigenfunction maps, or a discrete counterpart, have been studied for data parametrization
and dimensionality reduction, e.g. [13-18]; for shape distances, e.g. [19-22]; and for shape registration,
e.g. [23-29]. In particular, in the data analysis community, (1) is known as the eigenmap [13], (3) is known
as the diffusion map [15,16], and = {/\;1/2% ()} is known as the global point signature [18]. These maps
are all equivalent up to an invertible linear transformation. Hence, any embedding result applies to all of
them. For an overview of spectral geometry in shape and data analysis, we refer the reader to Mémoli [22].

There seem to be no rules for choosing the number of eigenfunctions to use for a given application. While
not all applications require an (injective) embedding of data, many eigenfunction-based shape registration
methods do, e.g. [24-29], as we explain in Section 1.1 below. In the discrete setting one can write an
algorithm to determine the smallest m for which @™ : M — R™ is an embedding, although such an
approach may become computationally intensive. For example, if M is represented as a polyhedral surface,
one may write an algorithm to check for self-intersections of polygon faces in the image ®™ : M — R™. The
fail-proof approach is to use all eigenfunctions, in which case one is assured an embedding. This approach is
mentioned for point cloud data in Coifman and Lafon [16]. Specifically, they bound the maximal embedding
dimension from above by the size of the full point sample. This becomes computationally demanding,
however, especially in applications where one must solve an optimization problem over all eigenspaces, e.g.
[21,24,25,28], as we discuss in Section 1.1. Under the assumption that the shape or data is a sample drawn
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