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Compressive sampling (CoSa) has provided many methods for signal recovery 
of signals compressible with respect to an orthonormal basis. However, modern 
applications have sparked the emergence of approaches for signals not sparse in an 
orthonormal basis but in some arbitrary, perhaps highly overcomplete, dictionary. 
Recently, several “signal-space” greedy methods have been proposed to address 
signal recovery in this setting. However, such methods inherently rely on the 
existence of fast and accurate projections which allow one to identify the most 
relevant atoms in a dictionary for any given signal, up to a very strict accuracy. 
When the dictionary is highly overcomplete, no such projections are currently 
known; the requirements on such projections do not even hold for incoherent or 
well-behaved dictionaries. In this work, we provide an alternate analysis for signal 
space greedy methods which enforce assumptions on these projections which hold 
in several settings including those when the dictionary is incoherent or structurally 
coherent. These results align more closely with traditional results in the standard 
CoSa literature and improve upon previous work in the signal space setting.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In many signal and image processing applications we encounter the following problem: recovering an 
original signal x ∈ R

d from a set of noisy measurements

y = Mx + e, (1)

where M ∈ R
m×d is a known linear operator and e ∈ R

d is additive bounded noise, i.e. ‖e‖2
2 ≤ ε2. In 

many cases such as those in Compressive Sampling (CoSa) [1], we have m � d and thus (1) has infinitely 

* Corresponding author.
E-mail addresses: raja@cs.technion.ac.il (R. Giryes), dneedell@cmc.edu (D. Needell).

http://dx.doi.org/10.1016/j.acha.2014.07.004
1063-5203/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.acha.2014.07.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/acha
mailto:raja@cs.technion.ac.il
mailto:dneedell@cmc.edu
http://dx.doi.org/10.1016/j.acha.2014.07.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.acha.2014.07.004&domain=pdf


2 R. Giryes, D. Needell / Appl. Comput. Harmon. Anal. 39 (2015) 1–20

many solutions. To make the problem well-posed we rely on additional priors for the signal x, such as 
sparsity.

The sparsity assumption provides two main models, termed the synthesis and analysis models [2]. The 
synthesis model, which has received great attention in the past decade, assumes that x has a k-sparse 
representation α under a given dictionary D ∈ R

d×n [3]. In other words, there exists a vector α ∈ R
n such 

that x = Dα and ‖α‖0 ≤ k, where ‖α‖0 = |supp(α)| denotes the �0 pseudo-norm. Under the synthesis 
model assumption we can recover x = Dα by solving

argmin
α

‖α‖0 s.t. ‖y − MDα‖2 ≤ ε. (2)

Since solving (2) is an NP-complete problem in general [4], approximation techniques are required for 
recovering x. One strategy uses relaxation, replacing the �0 with the �1 norm, resulting in the �1-synthesis 
problem

α̂�1 = argmin
α

‖α‖1 s.t. ‖y − MDα‖2 ≤ ε. (3)

The study of these types of synthesis programs has largely relied on properties like the Restricted Isometry 
Property (RIP) [5], which states that

(1 − δk)‖x‖2 ≤ ‖Mx‖2 ≤ (1 + δk)‖x‖2 for all k-sparse x,

for some small enough constant δk < 1.
If the matrix D is unitary and the vector x has a k-sparse representation α, then when M satisfies the 

RIP with δ2k < δ�1 , the program (3) accurately recovers the signal,

‖x̂�1 − x‖2 ≤ C�1ε, (4)

where x̂�1 = Dα̂�1 , C�1 is a constant greater than 
√

2 and δ�1 (� 0.4652) is a constant [6–8]. This result also 
implies perfect recovery in the absence of noise. It was extended also for incoherent redundant dictionaries [9].

An alternative approach to approximating (2) is to use a greedy strategy. Recently introduced methods 
that use this strategy are the CoSaMP [10], IHT [11], and HTP [12] methods. Greedy methods iteratively 
identify elements of the support of the signal, and once identified, use a simple least-squares to recover the 
signal. These methods were shown to have guarantees in the form of (4) under the assumption of the RIP. 
However, such results hold only when D is orthonormal, and do not hold for general dictionaries D. Recently, 
the greedy approaches have been adapted to this setting. For example, the Signal Space CoSaMP method 
[13] adapts CoSaMP to the setting of arbitrary dictionaries. A slight modification1 of this method is shown 
in Algorithm 1. In the algorithm, the subscript T denotes the restriction to elements (columns) indexed 
in T . The function Sk(y) returns the support of the best k-sparse representation of y in the dictionary D, 
and PT denotes the projection onto that support.

In [13], the authors analyze this CoSaMP variant under the assumption of the D-RIP [14], which states2

(1 − δk)‖Dα‖2 ≤ ‖MDα‖2 ≤ (1 + δk)‖Dα‖2 for all k-sparse α. (5)

They prove that under this assumption, if one has access to projections Sk which satisfy

1 Here we use two separate support selection schemes, whereas the original Signal Space CoSaMP method uses one.
2 By abuse of notation we denote both the RIP and the D-RIP constants by δk. It will be clear from the context to which one 

we refer at each point in the article.
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