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Enhancement of multiple-scale elongated structures in noisy image data is relevant 
for many biomedical applications but commonly used PDE-based enhancement 
techniques often fail at crossings in an image. To get an overview of how an image 
is composed of local multiple-scale elongated structures we construct a continuous 
wavelet transform on the similitude group, SIM(2). Our unitary transform maps 
the space of images onto a reproducing kernel space defined on SIM (2), allowing 
us to robustly relate Euclidean (and scaling) invariant operators on images to left-
invariant operators on the corresponding continuous wavelet transform. Rather than 
often used wavelet (soft-)thresholding techniques, we employ the group structure in 
the wavelet domain to arrive at left-invariant evolutions and flows (diffusion), for 
contextual crossing preserving enhancement of multiple scale elongated structures 
in noisy images. We present experiments that display benefits of our work compared 
to recent PDE techniques acting directly on the images and to our previous work on 
left-invariant diffusions on Coherent state transforms defined on Euclidean motion 
group.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Elongated structures in the human body such as fibres and blood vessels often require analysis for diag-
nostic purposes. A wide variety of medical imaging techniques such as magnetic resonance imaging (MRI), 
microscopy, X-ray fluoroscopy, fundus imaging etc. exist to achieve this. Many (bio)medical questions related 
to such images require detection and tracking of the elongated structures present therein. Due to the desire 
to reduce acquisition time and radiation dosage the acquired medical images are often noisy, of low contrast 
and suffer from occlusions and incomplete data. Furthermore multiple-scale elongated structures exhibit 
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crossings and bifurcations which is a notorious problem in (medical) imaging. Hence crossing-preserving 
enhancement of these structures is an important preprocessing step for subsequent detection.

In recent years PDE based techniques have gained popularity in the field of image processing. Due to 
well posed mathematical results these techniques lend themselves to stable algorithms and also allow math-
ematical and geometrical interpretation of classical methods such as Gaussian and morphological filtering, 
dilation or erosion etc. on Rd. These techniques typically regard the original image, f ∈ R

2 → R, as an 
initial state of a parabolic (diffusion like) evolution process yielding filtered versions, uf : R2 × R

+ → R. 
Here uf is called the scale space representation of image f . The domain of uf is scale space R2 × R

+. 
A typical scale space evolution is of the form{

∂suf (x, s) = ∇x · (C(uf (·, s))(x)∇xuf )(x, s)
uf (x, 0) = f(x), (1)

where C(uf (·, s))(x) models the diffusivity depending on the differential structure at (x, s, uf (x, s)) ∈ R
d ×

R
+×R. For C = 1, Eq. (1) is the usual linear heat equation. The corresponding evolution is known in image 

processing as a Gaussian Scale Space [1–4]. In their seminal paper [5], Perona and Malik proposed nonlinear 
filters to bridge scale space and restoration ideas. Based on the observation that diffusion should not occur 
when the (local) gradient value is large (to avoid blurring the edges), they pointed out that nonlinear 
adaptive isotropic diffusion is achieved by replacing C = 1 by C(uf (·, s))(x) = c(‖∇xuf (x, s)‖), where 
c : R+ → R

+ is some smooth strictly decreasing positive function vanishing at infinity. An improvement of 
the Perona–Malik scheme is the “coherence-enhancing diffusion” (CED) introduced by Weickert [6] which 
additionally uses the direction of the gradient ∇xuf leading to diffusion constant c being replaced by a 
nonlinear matrix.

However these methods often fail in image analysis applications with crossing or bifurcating curves as 
the direction of gradient at these structures is ill-defined, see [7] for more details. Scharr et al. in [8] present 
techniques which effectively deal with the particular case of X-junctions by relying on the 2-nd order jet 
of Gaussian derivatives in the image domain. Passing through higher order jets of Gaussian derivatives 
and induced Euclidean invariant differential operators does not allow one to generically deal with complex 
crossings and/or bifurcating structures. Instead we need gauge frames in higher dimensional Lie groups to 
deal with this issue. According to the terminology used in [9, Section 3.3.3] a gauge frame is a local coordinate 
system aligned/gauged with locally present (elongated) structures in an image. Differentiating w.r.t. such 
coordinates provides intrinsically natural derivatives as opposed to differentiating w.r.t. (artificially imposed) 
global coordinates. At salient locations in the image, where multiple scale elongated structures cross, one 
needs multiple gauge frames. Therefore instead of gauge frames per position, x ∈ R

2 in a (grey-scale) image 
f : R2 → R, we attach gauge frames to each Lie group element,

g = (x, t) ∈ G = R
2
� T.

in a Coherent state (CS) transform Wψf : G → C of an image f : R
2 → R. In this article we mainly 

consider (G = SE(2), T = SO(2)) and (G = SIM (2), T = R
+ × SO(2)), where (multiple scale) elongated 

structures are manifestly disentangled via the transform, allowing for a crossing preserving flow (steered by 
gauge frames). In medical image processing Wψf for G = SE(2) is also referred to as an orientation score 
as it provides a score of how an image is decomposed out of local (possibly crossing) orientations.

1.1. Why extend to the SIM (2) group?

In this paper we wish to extend the aforementioned framework to the case of the similitude group (group 
of planar translations, rotations and scaling), for the following reasons:
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