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In a broad range of natural and real-world dynamical systems, measured signals 
are controlled by underlying processes or drivers. As a result, these signals exhibit 
highly redundant representations, while their temporal evolution can often be 
compactly described by dynamical processes on a low-dimensional manifold. In 
this paper, we propose a graph-based method for revealing the low-dimensional 
manifold and inferring the processes. This method provides intrinsic models for 
measured signals, which are noise resilient and invariant under different random 
measurements and instrumental modalities. Such intrinsic models may enable 
mathematical calibration of complex measurements and build an empirical geometry 
driven by the observations, which is especially suitable for applications without a 
priori knowledge of models and solutions. We exploit the temporal dynamics and 
natural small perturbations of the signals to explore the local tangent spaces of 
the low-dimensional manifold of empirical probability densities. This information 
is used to define an intrinsic Riemannian metric, which in turn gives rise to the 
construction of a graph that represents the desired low-dimensional manifold. Such 
a construction is equivalent to an inverse problem, which is formulated as a nonlinear 
differential equation and is solved empirically through eigenvectors of an appropriate 
Laplace operator. We examine our method on two nonlinear filtering applications: 
a nonlinear and non-Gaussian tracking problem as well as a non-stationary hidden 
Markov chain scheme. The experimental results demonstrate the power of our theory 
by extracting the underlying processes, which were measured through different 
nonlinear instrumental conditions, in an entirely data-driven nonparametric way.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Due to natural constraints, in a broad range of real-world applications, the accessible (high-dimensional) 
data exhibit typical structure and often lie on a (low-dimensional) manifold. In recent years, this observation 
gave rise to the development of manifold learning methods, which aim at finding parameterizations of the 
underlying low-dimensional structures of given data sets [1–5]. A similar observation applies to dynamical 
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systems: the measured output signal of the system is often controlled by few underlying drivers, whose 
temporal evolution can be compactly described by dynamical processes on a low-dimensional manifold [6–10]. 
This belief is naturally encoded in the standard state-space formalism used to describe dynamical systems: 
given signal measurements zt in time t, we are interested in estimating the associated system state θt. We 
remark that the focus of this paper will be on the state estimation problem, which is typically extended to 
filtering, forecasting and prediction, as well as noise suppression problems by attaching statistical models 
in a Bayesian manner.

To support the analysis of time series and dynamical systems, the standard geometric setting of manifold 
learning needs to be extended. First, the mapping between the measured signal and the underlying processes 
is often stochastic and contains measurement noise. As a result, repeated measurements of the same phe-
nomenon yield different measurement realizations. Furthermore, the measurements may be acquired using 
different instruments or sensors. Each set of related measurements of the same phenomenon will then have 
a different manifold, depending on the instrument and the specific realization. Thus, to provide meaningful 
information on the true state of the system, the geometric parameterization should be invariant to the 
measurement and instrumental modalities. Second, the dynamics of the signals carry essential information 
and should be encoded in the analysis results. Third, the ability to sequentially analyze streaming data is 
an important aspect of dynamical systems and signal processing. When a stream of new incoming signal 
samples becomes available, the manifold model needs to be efficiently extended.

In [11], Singer and Coifman addressed the problem in which the desired “interesting” data are accessible 
via an unknown nonlinear measurement function. To provide a model for the desired data, rather than the 
accessible measurements, the Mahalanobis distance was used to invert the measurement function locally, 
assuming that the function that maps the data into a set of measurements is deterministic and stably 
invertible on its range. As a result, their approach provides a model for the desired manifold, whereas 
classic manifold learning methods provide a model for the manifold of the observations.

In this paper, we extend [11] and propose a graph-based method for the parameterization of the under-
lying processes controlling stochastic dynamical systems, which we refer to as empirical intrinsic geometry 
(EIG). The primary focus of the paper is on the construction of an intrinsic Riemannian distance met-
ric between measurement samples that exhibits the desired invariance to the measurement modality and 
noise. The construction of the metric is carried out in two scales of short-time windowing. In a micro-
scale, local probability densities of the measurements are estimated in windows and viewed as descriptors, 
or features, where the sampling rate of the measurements is assumed to be sufficiently high to allow for 
an accurate densities estimation. We will motivate this particular choice of features by showing that any 
stationary measurement noise in the signal domain is translated to a linear operation in the probability 
densities domain. In a macro-scale, we exploit the temporal dynamics and natural small perturbations of 
the underlying process to explore the local tangent spaces to the manifold by estimating the covariances 
of the probability densities in time windows. Here we further assume that the signal is pseudo-stationary, 
i.e., its probability density is slowly changing with time. Based on the estimates of the local probability 
densities and their covariances, we compute the Mahalanobis distance [11]. Since the Mahalanobis distance 
is invariant to linear transformations, and since any measurement noise is translated to a linear transfor-
mation in the domain of probability densities, the constructed distance metric is invariant to moderate 
noise.

Despite drawing most of our attention in the present work, the Mahalanobis distance is an intermediate 
analysis result, since it provides merely a local Euclidean structure. Nevertheless, the availability of such 
an intrinsic distance metric enables us to construct diffusion geometry [5] via a graph that represents 
the intrinsic manifold of underlying processes. This construction is shown to be equivalent to an inverse 
problem, which is solved empirically through eigenvectors of an appropriate Laplace operator. Specifically, 
the eigenvectors provide an embedding (or a parametrization) of the underlying processes on the intrinsic 
manifold. We remark that the construction of the graph is implemented using a reference set of measurements 
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