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The theory of compressed sensing shows that it is highly possible to recover a sparse 
signal from few measurements. Due to its wide applications, compressed sensing has 
drawn attention of many researchers from the fields of signal and image processing, 
applied mathematics, and statistics. In this paper we are interested in signals which 
are sparse under redundant tight frames. Some sufficient conditions are provided to 
guarantee the stable recovery via solving analysis based approaches. Compared with 
the previous work [12,16], our sufficient conditions are weaker and the estimations 
of l2 bound only depend on the measurement matrix.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In compressed sensing, a vector x ∈ R
n is called k-sparse if the number of its nonzero entries is at most 

k(� n). If a vector can be approximated well by sparse vectors, it is called a compressible vector. Suppose 
that the measurements of a sparse vector x are given by

y = Ax + w,

where w ∈ R
m is the noise and A is an m × n measurement matrix with m � n. The sparse vector x can 

be recovered via solving convex minimization problems, provided that the measurement matrix A satisfies 
some conditions such as mutual incoherence property [9] or restricted isometry property [5].
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This paper mainly considers the case that x is not sparse itself but is compressible with respect to some 
given tight frame D. If the l2 norm of the noise w is bounded by ε, then the recovery problem can be 
formulated as the constrained analysis based approach:

min
x̃∈Rn

‖Dx̃‖1 subject to ‖Ax̃− y‖2 � ε. (1.1)

The constrained analysis based approach is said to produce a stable estimation x̂ to the true vector x if

‖x̂− x‖2 � C0

(
ε + ‖Dx− (Dx)k‖1√

k

)
, (1.2)

where (Dx)k denotes the vector consisting of the largest k coefficients of Dx in magnitude and C0 is 
a constant. As a special case, if the coefficient vector Dx is at most k-sparse and there is no noise in 
the measurements, then x is exactly recovered. A widely used condition that guarantees the stable signal 
recovery is the restricted isometry property adapted to D [3]. Let D∗ be the complex conjugate of the 
transpose of a d × n matrix D. Since D is often real-valued, D∗ in this paper is simply the transpose of D. 
Then D is a tight frame for Rn if and only if D∗D = In. The measurement matrix A satisfies the restricted 
isometry property adapted to D (D-RIP) if there is a constant 0 < δk < 1 such that

(1 − δk)‖v‖2
2 � ‖Av‖2

2 � (1 + δk)‖v‖2
2 (1.3)

holds for all v ∈ Σk := {D∗c : c ∈ R
d, ‖c‖0 � k}. The smallest constant δk satisfying (1.3) is called the 

D-RIP constant. When D is the identity matrix, the constant δk is called the restricted isometry property
(RIP) constant [5]. Therefore, the D-RIP is a natural extension of the RIP. Almost all random matrices, 
such as Gaussian, subgaussian, Bernoulli random matrices and subsampled Fourier matrices, satisfying the 
RIP also satisfy the D-RIP, up to multiplication by a random sign matrix (in the case of the random DFT, 
for example) [3]. It was first proved in [3] that the condition δ2k < 0.08 guarantees the stable recovery of 
the l1 minimization model in (1.1) and the constant C0 in (1.2) depends on the D-RIP constant δ2k. This 
sufficient condition for stable recovery was later improved in [13,14].

Instead of solving (1.1) directly, many algorithms were proposed to solve the following unconstrained 
analysis based approach:

min
x̃∈Rn

λ‖Dx̃‖1 + 1
2‖Ax̃− y‖2

2. (1.4)

See [10] for a recent overview on the analysis based approaches (1.4). Under some assumptions on the matrix 
A and the tight frame D, the relation between (1.1) and (1.4) has been discussed in [18]. Generally, the 
minimization of (1.1) and the minimization of (1.4) are not exactly the same. To the best of our knowledge, 
using D-RIP to guarantee the stable recovery, the condition on the D-RIP constant δ2k for solving (1.4)
is stronger than that for solving (1.1). Under the condition that ‖DA∗w‖∞ � λ

2 and δ2k < 0.0833, the 
minimization solution x̂ to (1.4) satisfies

‖x̂− x‖2 � C1
√
kλ + C2

‖Dx− (Dx)k‖1√
k

, (1.5)

where the constant C2 depends on the D-RIP constant while the constant C1 depends on both the D-RIP 
constant and ‖DD∗‖1,1 [12]. Here ‖DD∗‖1,1 stands for the operator norm of DD∗ acting on l1, that is,

‖DD∗‖1,1 := sup
{
‖DD∗c‖1 : c ∈ R

d, ‖c‖1 � 1
}
.



Download English Version:

https://daneshyari.com/en/article/4605024

Download Persian Version:

https://daneshyari.com/article/4605024

Daneshyari.com

https://daneshyari.com/en/article/4605024
https://daneshyari.com/article/4605024
https://daneshyari.com

