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We investigate the minimal number of linear measurements needed to recover sparse 
disjointed vectors robustly in the presence of measurement error. First, we analyze 
an iterative hard thresholding algorithm relying on a dynamic program computing 
sparse disjointed projections to upper-bound the order of the minimal number of 
measurements. Next, we show that this order cannot be reduced by any robust 
algorithm handling noninflating measurements. As a consequence, we conclude that 
there is no benefit in knowing the simultaneity of sparsity and disjointedness over 
knowing only one of these structures.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction and main result

In this note, we examine the recovery of sparse disjointed vectors x ∈ C
N from linear measurements 

y = Ax ∈ C
m with m � N . We recall that a vector x ∈ C

N is said to be s-sparse if it has no more than 
s nonzero entries, i.e., if card(supp(x)) ≤ s, where supp(x) := {i ∈ �1 : N� : xi �= 0}. It is said to be 
d-disjointed if there are always at least d zero entries between two nonzero entries, i.e., if |j − i| > d for 
all distinct i, j ∈ supp(x). We investigate here vectors that are simultaneously s-sparse and d-disjointed. 
This investigation was prompted by grid discretizations in MIMO radar problems [9]: the nonzero entries 
represent the positions of airplanes in an observation frame, so it is natural to assume that their number 
is low and that they are not too close to one another. Sparse disjointed vectors also serve as a pertinent 
model for neural spike trains, see [8] which already established recovery results akin to those presented 
in Section 3. In this note, however, we emphasize the question of the minimal number of measurements 
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needed for robust uniform recovery of sparse disjointed vectors. We provide a complete answer with regard 
to noninflating measurements relative to this model (see Section 4 for the explanation of this terminology). 
As a reminder, the uniform recovery of s-sparse vectors is achievable from

m � mspa := s ln
(
e
N

s

)
(1)

random linear measurements. It can be carried out efficiently using convex optimization or iterative greedy 
algorithms. The recovery is robust with respect to measurement error and stable with respect to sparsity 
defect. The number of measurements in (1) is optimal when stability is required. As for the uniform recovery 
of d-disjointed vectors, it is achievable from

m � mdis := N

d
(2)

deterministic Fourier measurements and it can be carried out efficiently using convex optimization (see 
[4, Corollary 1.4]). The number of measurements (2) is easily seen to be optimal, even without requiring 
stability. Concerning simultaneously sparse and disjointed vectors, our main result is informally stated 
below.

Theorem 1. The minimal number of noninflating measurements needed to achieve robust uniform recovery 
of s-sparse d-disjointed vectors is of the order of

mspa&dis := s ln
(
e
N − d(s− 1)

s

)
. (3)

The significance of this result lies in its interpretation: for mspa&dis to be of smaller order than mspa, we 
need t := (N − d(s − 1))/s ≤ N/(2s); but then d = (N − st)/(s − 1) ≥ (N −N/2)/(s − 1) ≥ N/(2s), i.e., 
N/d ≤ 2s, which implies that mdis is of smaller order than mspa&dis. In short, we arrive at

mspa&dis � min {mspa,mdis} . (4)

Expressed differently, there is no benefit in knowing the simultaneity of sparsity and disjointness as far as the 
number of noninflating measurements is concerned. This echoes the message of [10], which showed that vec-
tors possessing certain structures simultaneously require at least as many Gaussian random measurements 
for their recovery via combined convex relaxations as what could have been achieved via the convex relax-
ation associated to one of the structures. Our result is narrower since it focuses on a particular simultaneity 
of structures, but no limitation is placed on the nature of the recovery algorithm and the measurements are 
only assumed to be noninflating instead of Gaussian. Note that restricting to �1-minimization and Gaussian 
measurements would have been irrelevant here, because even nonuniform recovery, i.e., the recovery of a 
single sparse vector—a fortiori of a disjointed one—already requires a number of measurements of order at 
least mspa, as inferred from known results on phase transition (see [5] for the original arguments and [1] for 
recent arguments).

The rest of this note is organized as follows. In Section 2, we discuss basic facts about sparse disjointed
vectors. In particular, we reveal how projections onto the set of sparse disjointed vectors can be computed 
by dynamic programming. The ability to compute these projections would allow for the modification of 
virtually all sparse recovery iterative greedy algorithms to fit the sparse disjointed framework, but we focus 
only on iterative hard thresholding (IHT)—arguably the simplest of these algorithms—in Section 3. There, 
we give a short justification that robust uniform recovery can be carried out efficiently based on random 
measurements (which are noninflating) provided their number has order at least mspa&dis. Finally, Section 4
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