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We consider the problem of learning a set from random samples. We show how relevant
geometric and topological properties of a set can be studied analytically using concepts
from the theory of reproducing kernel Hilbert spaces. A new kind of reproducing kernel,
that we call separating kernel, plays a crucial role in our study and is analyzed in detail. We
prove a new analytic characterization of the support of a distribution, that naturally leads
to a family of regularized learning algorithms which are provably universally consistent and
stable with respect to random sampling. Numerical experiments show that the proposed
approach is competitive, and often better, than other state of the art techniques.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we study the problem of learning from data the set where the data probability distribution is concentrated.
Our study is more broadly motivated by questions in unsupervised learning, such as the problem of inferring geometric
properties of probability distributions from random samples.

In recent years, there has been great progress in the theory and algorithms for supervised learning, i.e. function approx-
imation problems from random noisy data [10,22,29,55,74]. On the other hand, while there are a number of methods and
studies in unsupervised learning, e.g. algorithms for clustering, dimensionality reduction, dictionary learning (see Chapter 14
of [38]), many interesting problems remain largely unexplored.

Our analysis starts with the observation that many studies in unsupervised learning hinge on at least one of the follow-
ing two assumptions. The first is that the data are distributed according to a probability distribution which is absolutely
continuous with respect to a reference measure, such as the Lebesgue measure. In this case it is possible to define a density
and the corresponding density level sets. Studies in this scenario include [8,30,44,69] to name a few. Such an assumption
prevents considering the case where the data are represented in a high-dimensional Euclidean space but are concentrated
on a Lebesgue negligible subset, as a lower-dimensional submanifold. This motivates the second assumption – sometimes
called manifold assumption – postulating that the data lie on a low-dimensional Riemannian manifold embedded in a Eu-
clidean space. This latter idea has triggered a large number of different algorithmic and theoretical studies (see for example
[4,6,20,21,27,59]). Though the manifold assumption has proved useful in some applications, there are many practical sce-
narios where it might not be satisfied. This observation has motivated considering more general situations such as manifold
plus noise models [18,52], and models where the data are described by combinations of more than one manifold [46,76].
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Here we consider a different point of view and work in a setting where the data are described by an abstract probability
space and a similarity function induced by a reproducing kernel [65]. In this framework, we consider the basic problem of
estimating the set where the data distribution is concentrated (see Section 1.2 for a detailed discussion of related works).
A special class of reproducing kernels, that we call separating kernels, plays a special role in our study. First, it allows to
define a suitable metric on the probability space and makes the support of the distribution well defined; second, it leads
to a new analytical characterization of the support in terms of the null space of the integral operator associated to the
reproducing kernel.

This last result is the key towards a new computational approach to learn the support from data, since the integral op-
erator can be approximated with high probability from random samples [58,65]. Estimation of the null space of the integral
operator can be unstable, and regularization techniques can be used to obtain stable estimators. In this paper we study a
class of regularization techniques proposed to solve ill-posed problems [34] and already studied in the context of supervised
learning [3,48]. Regularization is achieved by filtering out the small eigenvalues of the sample empirical matrix defined by
the kernel. Different algorithms are defined by different filter functions and have different computational properties. Con-
sistency and stability properties for a large class of spectral filters and of the corresponding algorithms are established in a
unified framework. Numerical experiments show that the proposed algorithms are competitive, and often better, than other
state of the art techniques.

The paper is divided into two parts. The first part includes Section 2, where we establish several mathematical results
relating reproducing kernel Hilbert spaces of functions on a set X and the geometry of the set X itself. In particular, in this
section we introduce the concept of separating kernel, which we further explore in Section 3. These results are of interest in
their own right, and are at the heart of our approach. In the second part of the paper we discuss the problem of learning the
support from data. More precisely, in Section 4 we illustrate some algorithms for learning the support of a distribution from
random samples. In Section 5 we establish universal consistency for the proposed methods and discuss stability to random
sampling. We conclude in Sections 6 and 7 with some further discussions and some numerical experiments, respectively.
A conference version of this paper appeared in [28]. We now start by describing in some more detail our results and
discussing some related works.

1.1. Summary of main results

In this section we briefly describe the main ideas and results in the paper.
The setting we consider is described by a probability space (X,ρ) and a measurable reproducing kernel K on the

set X [2]. The data are independent and identically distributed (i.i.d.) samples x1, . . . , xn , each one drawn from X with
probability ρ . The reproducing kernel K reflects some prior information on the problem and, as we discuss in the following,
will also define the geometry of X . The goal is to use the sample points x1, . . . , xn to estimate the region where the
probability measure ρ is concentrated.

To fix some ideas, the space X can be thought of as a high-dimensional Euclidean space and the distribution ρ as being
concentrated on a region Xρ , which is a smaller – and potentially lower dimensional – subset of X (e.g. a linear subspace
or a manifold). In this example, the goal is to build from data an estimator Xn which is, with high probability, close to Xρ

with respect to a suitable metric.
We first note that a precise definition of Xρ requires some care. If ρ is assumed to have a continuous density with

respect to some fixed reference measure (for example, the Lebesgue measure in the Euclidean space), then the region Xρ can
be easily defined to be the closure of the set of points where the density function is non-zero. Nevertheless, this assumption
would prevent considering the situation where the data are concentrated on a “small”, possibly lower dimensional, subset
of X . Note that, if the set X were endowed with a topological structure and ρ were defined on the corresponding Borel
σ -algebra, it would be natural to define Xρ as the support of the measure ρ , i.e. the smallest closed subset of X having
measure one. However, since the set X is only assumed to be a measurable space, no a priori given topology is available.
Here we also remark that the definition of Xρ is not the only point where some further structure on X would be useful.
Indeed, when defining a learning error, a notion of distance between the set Xρ and its estimator Xn is also needed and
hence some metric structure on X is required.

The idea is to use the properties of the reproducing kernel K to induce a metric structure – and consequently a topol-
ogy – on X . Indeed, under some mild technical assumptions on K , the function

dK (x, y) =√K (x, x) + K (y, y) − 2K (x, y) ∀x, y ∈ X

defines a metric on X , thus making X a topological space. Then, it is natural to define Xρ to be the support of ρ with
respect to such metric topology. Moreover, the Hausdorff distance dH induced by the metric dK provides a notion of distance
between closed sets.

The problem we consider can now be restated as follows: we want to learn from data an estimator Xn of Xρ , such that
limn→∞ dH (Xn, Xρ) = 0 almost surely. While Xρ is now well defined, it is not clear how to build an estimator from data.
A main result in the paper, given in Theorem 3, provides a new analytic characterization of Xρ , which immediately suggests
a new computational solution for the corresponding learning problem. To derive and state this result, we introduce a new
notion of reproducing kernels, called separating kernels, that, roughly speaking, captures the sense in which the reproducing
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