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Given a set of data W = {w1, . . . , wN} ∈ R
D drawn from a union of subspaces,

we focus on determining a nonlinear model of the form U =
⋃

i∈I Si, where {Si ⊂
R

D}i∈I is a set of subspaces, that is nearest to W. The model is then used to classify
W into clusters. Our approach is based on the binary reduced row echelon form of
data matrix, combined with an iterative scheme based on a non-linear approximation
method. We prove that, in absence of noise, our approach can find the number of
subspaces, their dimensions, and an orthonormal basis for each subspace Si. We
provide a comprehensive analysis of our theory and determine its limitations and
strengths in presence of outliers and noise.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In many engineering and mathematics applications, data lives in a union of low dimensional subspaces
[1–6]. For instance, the set of all two dimensional images of a given face i, obtained under different illumi-
nations and facial positions, can be modeled as a set of vectors belonging to a low dimensional subspace
Si living in a higher dimensional space R

D [4,7,8]. A set of such images from different faces is then a
union U =

⋃
i∈I Si. Similar nonlinear models arise in sampling theory where R

D is replaced by an infinite
dimensional Hilbert space H , e.g., L2(RD) [1,9–12].

The goal of subspace clustering is to identify all of the subspaces that a set of data W = {w1, . . . , wN} ∈
R

D is drawn from and assign each data point wi to the subspace it belongs to. The number of subspaces,
their dimensions, and a basis for each subspace are to be determined even in presence of noise, missing data,
and outliers. The subspace clustering or segmentation problem can be stated as follows: Let U =

⋃M
i=1 Si

where {Si ⊂ B}Mi=1 is a set of subspaces of a Hilbert space or Banach space B. Let W = {wj ∈ B}Nj=1 be
a set of data points drawn from U . Then,

1. determine the number of subspaces M ,
2. determine the set of dimensions {di}Mi=1,
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3. find an orthonormal basis for each subspace Si,
4. collect the data points belonging to the same subspace into the same cluster.

Note that often the data may be corrupted by noise, may have outliers or the data may not be complete,
e.g., there may be missing data points. In some subspace clustering problems, the number M of subspaces or
the dimensions of the subspaces {di}Mi=1 are known. A number of approaches have been devised to solve the
problem above or some of its special cases. They are based on sparsity methods [13–18], algebraic methods
[19,20], iterative and statistical methods [2,3,10,21–24], and spectral clustering methods [14,15,25–32].

1.1. Paper contributions

• We develop an algebraic method for solving the general subspace segmentation problem for noiseless
data. For the case where all the subspaces are four dimensional, Gear observed, without proof, that the
reduced echelon form can be used to segment motions in videos [33]. In this paper, we develop this idea
and prove that the reduced row echelon form can completely solve the subspace segmentation problem
in its most general version. This is the content of Theorem 3.7 in Section 3.1.

• For noisy data, the reduced echelon form method does not work, and a thresholding must be applied.
However, the effect of the noise on the reduced echelon form method depends on the noise level and
the relative positions of the subspaces. This dependence is analyzed in Section 3.2 and is contained in
Theorems 3.9 and 3.11.

• When the dimensions of the subspaces is equal and known, we relate the subspace segmentation problem
to the non-linear approximation problem (Problem 1). The existence of a solution as well as an iterative
search algorithm for finding the solution is presented in Theorem 2.1. This algorithm works well with
noisy data but requires a good initial condition to locate the global minimum.

• The reduced echelon form together with the iterative search algorithm are combined together: A thresh-
olded reduced echelon form algorithm provides the initial condition to the iterative search algorithm.
This is done in Section 4.

• In Section 5, the algorithms are tested on synthetic and real data to evaluate the performance and
limitations of the methods.

2. Non-linear approximation formulation of subspace segmentation

When M is known, the subspace segmentation problem, for both the finite and infinite dimensional space
cases, can be formulated as follows:

Let B be a Banach space, W = {w1, . . . , wN} a finite set of vectors in B that correspond to observed
data. For i = 1, . . . ,M , let C = C1 × C2 × · · · × CM be the Cartesian product of M families Ci of closed
subspaces of B each containing the trivial subspace {0}. Thus, an element S ∈ C is a sequence {S1, . . . , SM}
of M subspaces of B with Si ∈ Ci. For example, when each Ci is the family of all subspaces of dimensions less
than or equal to d in the ambient space B = R

D, then an element S ∈ C is a set of M subspaces Si ⊂ R
D,

with dimensions dimSi � d. Another example is the infinite dimensional case in which B = L2(R) and each
Ci is a family of closed, shift-invariant subspaces of L2(R) that are generated by at most r < ∞ generators.
For example if r = 1, M = 2, an element S ∈ C may be the subspace S1 of all bandlimited functions
(generated by integer shifts of the generator function sinc(x) = sin(x)/x), and S2 the shift invariant space
generated by the B-spline functions βn of degree n. In these cases the subspaces in Si ∈ Ci are also infinite
dimensional subspaces of L2.

Problem 1.

1. Given a finite set W ⊂ B, a fixed p with 0 < p � ∞, and a fixed integer M � 1, find the infimum of
the expression
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