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A family of Parseval periodic wavelet frames is constructed. The family has optimal
time–frequency localization (in the sense of the Breitenberger uncertainty constant)
with respect to a family parameter and it has the best currently known localization
with respect to a multiresolution analysis parameter.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In recent years the wavelet theory of periodic functions has been continuously refined. First, periodic
wavelets were generated by periodization of wavelet functions on the real line (see, for example, [6]). A wider
and more natural approach providing a flexibility on a theoretical front and in applications is to study
periodic wavelets directly using a periodic analog of a multiresolution analysis (MRA). The concept of
periodic MRA is introduced and discussed in [14,18–21,26,27,29]. In [9], a unitary extension principle (UEP)
for constructing Parseval wavelet frames is rewritten for periodic functions (see Theorem 1). The approach
is developed further in [8].
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In this paper we focus on a property of good localization of both periodic wavelet functions and their
Fourier coefficients. The quantitative characteristic of this property is an uncertainty constant (UC ). Orig-
inally, the concept of the UC was introduced for the real line case in 1927 (see Definition 1) by Heisenberg
in [12]. Its periodic counterpart was introduced in 1985 by Breitenberger in [3] (see Definition 2). The smaller
UC corresponds to the better localization. In both cases there exists a universal lower bound for the UC
(the uncertainty principle). In non-periodic setup the minimum is attained on the Gaussian function. But
there is no periodic function attending the lower bound. So, to find a sequence of periodic functions having
an asymptotically minimal UC and some additional setup, for example a wavelet structure, is a natural
concern.

There is a connection between the Heisenberg and the Breitenberger UC s for wavelets. In [23] it is proved
that for periodic wavelets generated by periodization (see the definition in Section 4) of a wavelet function on
the real line the periodic UC tends to the real line UC of the original function as a parameter of periodization
tends to infinity. It would be a possible way to construct an optimal periodic wavelet system using the
periodization of a wavelet system on the real line. However, in [2] and [1] the following result is proven: if a
real line function ψ generates a wavelet Bessel set and the frequency center ω0,ψ̂0 = (ψ′, ψ)L2(R) = 0 (see
notation ω0,ψ̂0 in Definition 1), then the Heisenberg UC is greater or equal to 3/2. Moreover, it is unknown
if there exists a real line orthonormal wavelet basis or tight frame possessing the Heisenberg UC less than
2.134. This value is attained for a Daubechies wavelet [7]. The smallest possible value of the Heisenberg
UC for the family of the Meyer wavelets equals to 6.874 [17]. It is well known [5] that the Heisenberg UC
of the Battle–Lemarie and the Daubechies wavelets tends to infinity as their orders grow. A set of real
line orthogonal wavelet bases with the uniformly bounded Heisenberg UC s as their orders (smoothness)
grow is constructed in [15,16]. On the other hand, there are examples of real line wavelet frames possessing
asymptotically optimal UC such as nonorthogonal B-spline wavelets [28] and their generalizations [11].
However, these frames are not tight and we are looking for an orthogonal basis or tight frame. We will
discuss a particular issue of periodization in Section 4.

Some papers dealing with periodic UC s directly include [10,22,24,25]. For the first time in [25] peri-
odic UC s uniformly bounded with respect to an MRA parameter are computed for so-called trigonometric
wavelets (see also [24]). In [10], it is shown that the UC s of uniformly local, regular, and stable periodic
scaling functions and wavelets are uniformly bounded. In [22] an example of an asymptotically optimal
set of periodic functions {ϕh}h>0 is constructed, namely UC (ϕh) < 1/2 +

√
h/2. Later, ϕh is used as a

scaling function to generate a stationary interpolatory MRA (Vn). For the corresponding wavelet func-
tions ψn,h the UC is optimal for a fixed space Vn, but the estimate is nonuniform with respect to n,
namely UC (ψn,h) < 1/2 + 1.1n2

√
h. Nothing changes after orthogonalization: UC (ψ⊥

n,h) < 1/2 + 1.1n2
√
h,

UC (ϕ⊥
n,h) < 1/2 + n2

√
h.

The main contribution of this paper is Theorem 4, where we construct a family of scaling sequences
Φ0 = {(ϕa

j )j : a > 1} generating a family of wavelet sequences Ψ0 = {(ψa
j )j : a > 1} corresponding to a

nonstationary periodic MRA as it is defined in [8,14], and [27]. For a fixed level j of the MRA (V2j ), similar
to the construction in [22], the UC s of ϕa

j and ψa
j are asymptotically optimal, that is

lim
a→∞

sup
j∈N

UC
(
ϕa
j

)
= 1

2 , lim
a→∞

UC
(
ψa
j

)
= 1

2 .

But now, for a fixed value of the parameter a > 1, the scaling sequence has the asymptotically optimal UC ,
and the wavelet sequence has the smallest currently known value of the UC for the periodic wavelet frames
setup, that is

lim
j→∞

sup
a>1

UC
(
ϕa
j

)
= 1

2 , lim
j→∞

UC
(
ψa
j

)
= 3

2 .

As it is indicated above, the functions constructed in [22] do not have this property.
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