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Diffusion Maps (DM), and other kernel methods, are utilized for the analysis of high 
dimensional datasets. The DM method uses a Markovian diffusion process to model 
and analyze data. A spectral analysis of the DM kernel yields a map of the data into 
a low dimensional space, where Euclidean distances between the mapped data points 
represent the diffusion distances between the corresponding high dimensional data 
points. Many machine learning methods, which are based on the Euclidean metric, 
can be applied to the mapped data points in order to take advantage of the diffusion 
relations between them. However, a significant drawback of the DM is the need to 
apply spectral decomposition to a kernel matrix, which becomes infeasible for large 
datasets.
In this paper, we present an efficient approximation of the DM embedding. 
The presented approximation algorithm produces a dictionary of data points by 
identifying a small set of informative representatives. Then, based on this dictionary, 
the entire dataset is efficiently embedded into a low dimensional space. The 
Euclidean distances in the resulting embedded space approximate the diffusion 
distances. The properties of the presented embedding and its relation to DM method 
are analyzed and demonstrated.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Recent methods process massive amounts of high dimensional data by utilizing a manifold structure 
on which data points are assumed to lie. This manifold is immersed in the ambient space that is defined 
by observable/measurable parameters. Kernel methods are designed to support data analysis tasks by 
utilizing the intrinsic manifold geometry. These methods are based on a kernel matrix that is designed to 
quantify the similarity between data points on the manifold. Spectral analysis of the kernel in these methods 
reveals the internal geometric structure of the data [10]. This analysis decomposes the designed kernel and 
generates eigenvectors that map the data from the ambient space into an embedded space that is usually 
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low dimensional. Spectral kernel methods have an impact on a wide range of optimization problems from 
graph coloring [4,3,2] to image segmentation [27] and web search [8].

Kernel methods extend the classic Multi Dimensional Scaling (MDS) method [21] by replacing its Gram 
matrix with a kernel matrix whose spectral decomposition preserves similarities between data points instead 
of preserving the inner products that MDS preserves. Some examples for kernel methods are: LLE [24], 
Isomaps [32], Laplacian eigenmaps [5], Hessian eigenmaps [15], local tangent space alignment [34,35] and 
Diffusion Maps [11].

For a sufficiently small dataset, kernel methods can be implemented and executed on relatively standard 
computing devices. However, even for moderate size datasets, the necessary computational requirements to 
process them are unreasonable and, in many cases, impractical. For example, a segmentation of a medium 
size image with 512 × 512 pixels requires a 218 × 218 kernel matrix. The size of such a matrix necessitated 
about 270 GB of memory assuming double precision. Furthermore, the spectral decomposition procedure 
applied to such a matrix will be a formidable slow task. Hence, there is a growing need to have more 
computationally efficient methods that are practical for processing large datasets.

The main computational load associated with kernel methods is generated by the application of a spectral 
decomposition to a kernel matrix. Sparsification by a sparse eigensolver such as Lanczos, which computes 
the relevant eigenvectors [12] of the kernel matrix, is widely used to reduce the computational load involved 
in processing a kernel matrix. Another sparsification approach is to transform the dense kernel matrix 
into a sparse matrix by selectively truncating elements outside a given neighborhood radius of each dataset 
member. Other approaches to achieve matrix sparsification are described in [33]. Given a dataset with n data 
points, common methods including the one described in this paper for processing kernel methods require 
at least O(n2) operations to determine which entries to either calculate or to threshold. While there are 
methods to alleviate these computational complexities [1], kernel sparsification might result in a significant 
loss of intrinsic geometric information such as distances and similarities.

A prominent approach to reduces the discussed computational load is based on the Nyström extension 
method [17], which estimates the eigenvectors needed for an embedding. This approach is based on three 
phases:

1. The dataset is subsampled uniformly over the set of indices that are randomly chosen without repetition.
2. The subsamples define a smaller (than the dataset size) kernel. SVD is applied to the small kernel.
3. Spectral decomposition of a small kernel is extended by the application of the Nyström extension method 

to the entire dataset.

This three-phase approach reduces the computational load, but the approximated spectral decomposition 
output suffers from several major problems. Subsampling affects the quality of the spectral approximation. 
In addition, the Nyström extension method exhibits ill-conditioned behavior that also affects the spectral 
approximation [6]. Uniform subsampling of a sufficient number of data points captures most of the data 
probability distribution. However, rare events, compared to the subsampled size, might get lost. The results 
from this loss of information degrades the quality of the estimated embedded distances.

The Nyström extension method is based on inverting a kernel matrix that was derived from a uniform 
sampling. This kernel does not necessarily has a full rank. Therefore, a direct kernel matrix inversion 
is ill-conditioned. The Moor–Penrose pseudo-inverse operator can overcome the ill-conditioned effect in 
Nyström extension. However, this solution may generate an inaccurate extension. Therefore, combining 
Nyström extension with random sampling can result in inaccurate approximations of spectral decomposition.

Recently, a multiscale scheme, which is called multiscale extension (MSE), was suggested in [6]. The 
scheme, which samples scattered data and extends functions defined on sampled data points, overcomes 
some of the limitations of the Nyström method. The MSE method is based on mutual distances between 
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