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That is, we determine the largest functional space over which the risk of these estimators
converges at a chosen rate. In the unidimensional setting, refining the choice of the
coefficients that are subject to thresholding by pooling information from geometric
structures in the coefficient domain (e.g., vertical blocks) is known to provide ‘large
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1. Introduction

Multivariate wavelet bases for L,([0, 1)%) can be constructed by taking the tensor product of univariate wavelet func-
tions. The formed wavelet bases, so-called hyperbolic, have been proved to be of particular interest for many applications
and are studied since a long time for their approximation theoretic properties [18,28,27], in data compression [47,23,12,16],
in statistics [36] and more recently in very active research areas such as compressive sensing [20] and multifractal analy-
sis [1]. In this paper, we give new theoretical results about their abilities for denoising multidimensional signals by different
thresholding methods of the noisy hyperbolic wavelet coefficients.

Wavelet thresholding for nonparametric function estimation has been widely studied from both theoretical and practical
points of view. Most of the results for multidimensional function estimation follow as ‘direct’ extensions of unidimensional
results whenever considering the simple to handle multidimensional wavelet bases generated by functions that are prod-
uct of unidimensional scaling/wavelet functions with the same parameter of scale (here so-called isotropic wavelet bases).
These methods have been proved useful for example in [45] for estimating functions with isotropic regularity. Nevertheless,
when going to the estimation of multivariate objects, a key concept to integrate is the one of anisotropy. That is, to allow
these objects to have different smoothness properties along the different coordinate axes. This concept is also essential
when the different directions have completely different meaning as in [37] for time-varying spectral density estimation.
By comparing the isotropic and hyperbolic wavelet bases, Neumann and von Sachs [37] first show that optimal estimation
of two-dimensional functions in anisotropic Sobolev classes can be achieved using the hyperbolic wavelet basis (some-
times equally referred to as anisotropic wavelets). Neumann [36] continues that study by proving that thresholding in these
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hyperbolic bases allows for adaptive estimation to both spatially inhomogeneous smoothness and anisotropy captured by
anisotropic Besov scales.

In the field of anisotropic function estimation, the seminal work of Donoho [19], who constructs a dyadic classification
and regression tree estimator and proves its quasi-minimax optimality for estimating anisotropic function classes, had a
considerable impact as evidenced in the recent papers of Klemela [35] and Akakpo [2]. The former generalizes the ap-
proach of [19] for estimating multivariate densities with histograms and the latter uses adapted partitioning with piecewise
polynomial fits. Other approaches rely on kernel methods with adaptive bandwidths [30,10]. Goldenshluger and Lepski [24]
notably discuss the application of a pointwise adaptive procedure based on the selection from a large collection of kernels
to estimate a function that belongs to the union of anisotropic Holder classes. More sophisticated frameworks than the
Gaussian white noise model are also considered. For example, Comte and Lacour [15] study adaptive anisotropic kernel es-
timators in a multidimensional convolution model and Ingster and Stepanova [29] consider the problem of detecting signals
with particular attention being paid to the case of infinite dimension.

In this paper, we study several hyperbolic wavelet thresholding estimators. In contrast to Neumann [36] who gives some
minimax properties under the quadratic risk, we determine, under a more general loss function, the maximal functional
space (maxiset) for which the risk of these estimators reaches a given rate of convergence. We are particularly interested in
thresholding estimators which pool information from geometric structures in the coefficient domain. In the unidimensional
setting such estimators have been proven powerful from both theoretical and practical points of view (see among numerous
references [26,11,3]). In this paper, we restrict our study to hierarchically structured wavelet estimators that impose to the
coefficients that have survived the threshold to be arranged over a hierarchical structure [21,22]. More particularly, we study
a generalization of the hard tree estimator [4], namely the hyperbolic hard tree estimator. The hard tree estimator has been
proven to be the best element of a large family of vertical block thresholding estimators [5] and to outperform the hard
thresholding estimator under the L,-risk [4]. In a multidimensional context, we show that these estimators have a complex
behavior according to the risk function, the dimension and the rate. Despite that the hyperbolic hard tree estimator is much
more exposed to the curse of dimensionality than the hyperbolic hard thresholding estimator, it still outperforms the latter
in several identified cases. Within these cases, we identify a general structural constraint that is interpreted as a minimal
level of anisotropy and that is related to compound functional models.

The paper is structured as follows: we describe in Section 2 the construction of the d-dimensional hyperbolic wavelet
basis and the concept of heredity. Section 3 introduces the maxiset approach and Section 4 presents the estimators that will
be studied. The main maxiset results are given in Section 5. In Section 6 we interpret our maxiset results and discuss the
impact of the curse of dimensionality on information pooling. A conclusion is given in Section 7. The proofs are deferred to
Appendix A.

2. Multidimensional wavelet bases

There are several ways to construct wavelet bases of L, ([0, 1)¢) from a unidimensional wavelet basis of L, ([0, 1)) which
is built from the dilations and translations of a scaling function, say ¢, and a wavelet, say ¥. To deal with anisotropic
functions, Triebel [46] introduced a specific anisotropy adapted wavelet basis (a specific multidimensional wavelet basis
associated with an anisotropic parameter that matches the anisotropic smoothness of the signal). Those anisotropic wavelet
bases are useful tools in functional analysis and in theory of approximation since they give a benchmark (known level of
anisotropy); but they are obviously not well suited to design denoising methods that are required to be adaptive to a signal
with unknown smoothness and anisotropy. Hyperbolic wavelet bases have been proved useful for approximating functions
from anisotropic smoothness classes (see [18,44,28]) and are known to be more appropriate than the d-dimensional isotropic
wavelet basis (see among others [37,36,44,28]). This mainly motivated our choice to consider them.

2.1. d-dimensional hyperbolic wavelet basis

We detail the construction of the hyperbolic wavelet basis from the following unidimensional periodized wavelet basis
with V (for some V > 1) vanishing moment(s)

By ={¢(), ¥jr() =22y (2. —k); jeN, kefo,...,2/ —1}}.
We construct the d-dimensional hyperbolic wavelet basis, denoted as 34, as follows:
Bi= {00, ¥}, 1€10,1}\0, jeJ', ke K}

where 0= (0, ..., 0) and
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