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represented affinities are related to an underlying low-dimensional manifold from which
the data is sampled. This approach works under the assumption that, due to the low-
dimensionality of the underlying manifold, the kernel has a low numerical rank. Essentially,
this means that the kernel can be represented by a small set of numerically-significant

Keywords: eigenvalues and their corresponding eigenvectors.

Spectral analysis We present an upper bound for the numerical rank of Gaussian convolution operators,
Kernel method which are commonly used as kernels by spectral manifold-learning methods. The achieved
Numerical rank bound is based on the underlying geometry that is provided by the manifold from which
Gaussian convolution operator the dataset is assumed to be sampled. The bound can be used to determine the number

of significant eigenvalues/eigenvectors that are needed for spectral analysis purposes.
Furthermore, the results in this paper provide a relation between the underlying geometry
of the manifold (or dataset) and the numerical rank of its Gaussian affinities.
The term cover-based bound is used because the computations of this bound are done
by using a finite set of small constant-volume boxes that cover the underlying manifold
(or the dataset). We present bounds for finite Gaussian kernel matrices as well as for
the continuous Gaussian convolution operator. We explore and demonstrate the relations
between the bounds that are achieved for finite and continuous cases. The cover-oriented
methodology is also used to provide a relation between the geodesic length of a curve and
the numerical rank of Gaussian kernel of datasets that are sampled from it.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The rapid development of data collection techniques together with high availability of data and storage space introduce
increasingly big high-dimensional datasets that fit data analysis tasks. In many cases the quantity of data does not reflect
on its quality. Usually, it contains many redundancies that do not add important information over a limited set of repre-
sentatives. Furthermore, more often than not, the distribution of samples (also called data points) is significantly affected
by the sampling techniques that are used. These problems affect both the massive size of the sampled datasets and their
high-dimensionality, which in turn prevent classical statistical methods from being effective tools to analyze these datasets
due to the “curse of dimensionality” phenomenon.
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Due to the vast number of observable quantities that can be measured/sensed and used as parameters or features,
the raw representation of the data is usually high-dimensional. Recent dimensionality reduction methods use manifolds to
cope with this problem. Under this manifold existence assumption, a dataset is assumed to be sampled from an Euclidean
submanifold that has a relatively small intrinsic dimension. The ambient high-dimensional Euclidean space of the manifold
is defined by the raw parameters (or features) of the dataset. These parameters are mapped via non-linear functions to
low-dimensional coordinates of the manifold, which represent the independent factors that control the behaviors of the
analyzed phenomenon.

Several methods have been suggested to provide a low-dimensional representation of data points by preserving the
intrinsic structure of their underlying manifold. Kernel methods such as k-PCA [13,17], LLE [16], Isomaps [19], Laplacian
Eigenmaps [2], Hessian Eigenmaps [9], Local Tangent Space Alignment [22,23] and Diffusion Maps [5] have been used
for this task. These methods extend the classical PCA [11,10] and MDS [8,12] methods that project the data on a low-
dimensional hyperplane that preserves most of the variance in the dataset. Kernel methods substitute the linear relations
(i.e., inner-products) that are preserved by PCA and MDS with a kernel construction that introduces the synonymous notion
of similarity, proximity, or affinity between data points. Spectral analysis of this kernel is used to obtain an embedding of
the data points into an Euclidean space while preserving the kernel’s qualities, which are based on non-linear local qualities
of the underlying manifold.

Beside the high-dimensionality of the data, its size (i.e., number of sampled data points) is usually very big. The massive
size of the dataset is mostly due to the ease of obtaining data points. For example, most systems nowadays collect detailed
logs of every action, event and operation that occur with high frequency over long periods of time. However, most of
the collected data points are redundant, either because they are near-duplicates of other already-measured data points, or
because their properties can be interpolated by suitable subsets of representatives. Therefore, a combination of subsampling
and out-of-sample extension techniques can alleviate performance issues that massive datasets entail, and provide a more
suitable representation of the analyzed data. Optimally, such a representation would not be affected by the availability of
the data or by a sampling method but only rely on the behavior of the observed and analyzed phenomena.

The kernel approach, which is used for dimensionality reduction, has been applied for the described out-of-sample
extension tasks. A classical kernel-based technique is the Nystrom extension [14,1]. More recent methods are Geometric
Harmonics [6] and the Multiscale Extension in [3]. These methods use the spectral decomposition of the kernel (i.e., its
eigenvalues and eigenvectors) as a basis of its range. The eigenfunctions are shown to be easily extended to new data
points, thus any function in its range, which can be expressed as a linear combination of these eigenfunctions, is also easily
extended. Functions that are not in the range of the kernel are extended by projecting them on the kernel’s range and using
the resulting function (and extension) as an approximation of the original function.

Kernel methods work under the assumption that the used kernel has a small set of significant eigenvalues that should be
considered for the analysis, and the rest are negligible in the sense that they are numerically zero. This can be phrased as
a low numerical rank assumption, where the numerical rank is the number of numerically nonzero eigenvalues or singular
values (see Definition 2.1 for an explicit formulation). While in practice this assumption is usually satisfied, most papers do
not present rigorous mathematical support (beyond intuition) for it.

In this paper, we present upper bounds for the numerical rank of affinity kernels. We focus on Gaussian kernels, which
are popular in many spectral kernel methods (e.g. [5,2]). Such an upper bound was achieved in [3] based on a bounding
box volume of the analyzed dataset in the observable ambient space. We refine this bound by considering the underlying
geometry that is provided by the underlying manifold from which the dataset is assumed to be sampled. Instead of using
a single large bounding box, we use a finite set of small constant-volume boxes that cover the dataset (or its underlying
manifold), and use the minimal cover to provide a cover-based bound. When the constant size of the boxes is large enough
to cover the whole dataset with one box, this bound converges to the one in [3]. Thus, it is at least as tight as this already
established one.

The paper has the following structure. The problem setup and a previously-established bound are described in Section 2.
The refined cover-based bounds are established in Section 3. Section 4 demonstrates various nuances and concepts of cover-
based bounds, as well as their theoretical application for proving relations between the geodesic length of curves and the
numerical rank of datasets that are sampled from these curves.

2. Problem setup

Let M be a low-dimensional compact manifold that lies in the high-dimensional ambient space R™ that has an Euclidean
metric || - ||. In addition, let 8 be the Borel o-algebra on M and let ;& be a probability measure on (M, 8). Finally, let
M CR™ be a set of n data points (i.e., n = |[M|) sampled from the manifold M.

Define the affinity between two data points x, y € M to be gq(x, y) = e~ Ix=YI?/¢ where & is a positive parameter. Let
GQ/’ be an n x n affinity kernel between the data points in M, where each row and each column of GQ" corresponds to a
single data point in the dataset M, and each cell contains the affinity g (x, y) between the row’s data point x € M and the
column’s data point y € M.

The matrix GM is called the Gaussian kernel over the dataset M. This kernel introduces the notion of affinities and
local neighborhoods of data points in the dataset M (or on the manifold M) due to the exponential decay of it’s values in
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