
Journal of Systems Architecture 66-67 (2016) 48–60 

Contents lists available at ScienceDirect 

Journal of Systems Architecture 

journal homepage: www.elsevier.com/locate/sysarc 

Customization methodology for implementation of streaming 

aggregation in emb e dde d systems 

Lazaros Papadopoulos a , ∗, Dimitrios Soudris a , Ivan Walulya 

b , Philippas Tsigas b 

a School of Electrical and Computer Engineering, National Technical University of Athens (NTUA), 9 Heroon Polytechneiou, Zographou Campus, 157 80 

Athens, Greece 
b Computer Science and Engineering, Chalmers University of Technology, Gothenburg, Sweden 

a r t i c l e i n f o 

Article history: 

Received 28 November 2015 

Revised 3 March 2016 

Accepted 23 April 2016 

Available online 27 April 2016 

Keywords: 

Design space exploration 

Data streaming 

Embedded systems 

Performance 

Energy 

a b s t r a c t 

Streaming aggregation is a fundamental operation in the area of stream processing and its implemen- 

tation provides various challenges. Data flow management is traditionally performed by high perfor- 

mance computing systems. However, nowadays there is a trend of implementing streaming operators 

in low power embedded devices, due to the fact that they often provide increased performance per watt 

in comparison with traditional high performance systems. In this work, we present a methodology for 

the customization of streaming aggregation implemented in modern low power embedded devices. The 

methodology is based on design space exploration and provides a set of customized implementations 

that can be used by developers to perform trade-offs between throughput, latency, memory and energy 

consumption. We compare the proposed embedded system implementations of the streaming aggrega- 

tion operator with the corresponding HPC and GPGPU implementations in terms of performance per watt. 

Our results show that the implementations based on low power embedded systems provide up to 54 and 

14 times higher performance per watt than the corresponding Intel Xeon and Radeon HD 6450 imple- 

mentations, respectively. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Efficient real-time processing of data streams produced by 

modern interconnected systems is a critical challenge. In the past, 

low-latency streaming was mostly associated with network op- 

erators and financial institutions. Processing of millions of events 

such as phone calls, text messages, data traffic over a network 

and extracting useful information is important for guaranteeing 

high Quality of Service. Stream processing applications that handle 

traditional streams of data were mostly implemented by using 

Stream Processing Engines (SPEs) running on high performance 

computing systems. 

However, nowadays digital data come from various sources, 

such as sensors from interconnected city infrastructures, mobile 

cameras and wearable devices. In the device-driven world of 

Internet of Things, there is a need in many cases for processing 

data on-the-fly, in order to detect events while they are occurring. 

These data-in-motion come in the form of live streams and should 

∗ Corresponding author. 

E-mail addresses: lpapadop@microlab.ntua.gr (L. Papadopoulos), dsoudris@ 

microlab.ntua.gr (D. Soudris), ivanw@chalmers.se (I. Walulya), philippas. 

tsigas@chalmers.se (P. Tsigas). 

be gathered, processed and analyzed as quickly as possible, as 

they are being produced continuously. Low-power embedded 

devices or embedded micro-servers [1] are expected not only to 

monitor continuous streams of data, but also to detect patterns 

through advanced analytics and enable proactive actions. Applying 

analytics to these streams of data before the data is stored for 

post-event analysis (data-at-rest) enables new service capabilities 

and opportunities. 

Streaming aggregation is a fundamental operator in the area 

of stream processing. It is used to extract information from data 

streams through data summarization. Aggregation is the task of 

summarizing attribute values of subsets of tuples from one or 

more streams. A number of tuples are grouped and aggregations 

are computed on their attributes in real-time fashion. High fre- 

quency trading in stock markets (e.g. continuously calculating the 

average number of each stock over a certain time window), real 

time network monitoring (e.g. computing the average network 

traffic over a time window) are examples of data stream process- 

ing, where streaming aggregation along with other operators is 

used to extract information from streams of tuples. 

Streaming aggregation performance is affected a lot by the 

cost of data transfer. So far, streaming aggregation scenarios have 

been implemented and evaluated in various architectures, such as 

http://dx.doi.org/10.1016/j.sysarc.2016.04.013 

1383-7621/© 2016 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.sysarc.2016.04.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2016.04.013&domain=pdf
mailto:lpapadop@microlab.ntua.gr
mailto:dsoudris@microlab.ntua.gr
mailto:ivanw@chalmers.se
mailto:philippas.tsigas@chalmers.se
http://dx.doi.org/10.1016/j.sysarc.2016.04.013


L. Papadopoulos et al. / Journal of Systems Architecture 66-67 (2016) 48–60 49 

GPUs, Nehalem and Cell processors [2] . Indeed, there is a trend to 

utilize low power embedded platforms on running computational 

demanding applications in order to achieve high performance per 

watt [3–6] . 

Modern embedded systems provide different characteristics 

and features (such as memory hierarchy, data movement options, 

OS support, etc.) depending on the application domain that they 

target. The impact of each one of these features on performance 

and energy consumption of the whole system, when running a 

specific application, is often hard to predict at design time. Even if 

it is safe to assume in some cases that the utilization of a specific 

feature will improve or deteriorate the value of a specific metric 

in a particular context, it is hard to quantify the impact without 

testing. This problem becomes even harder when developers at- 

tempt to improve more than one metric simultaneously. A similar 

problem is the porting of an application running on a specific 

system to another with different specifications. The application 

usually needs to be customized in the new platform differently, in 

order to provide improved performance and energy efficiency. The 

typical solution followed by developers is to try to optimize the 

implementation of the application on the embedded platform in 

an ad-hoc manner, which is a time consuming process that may 

yield suboptimal results. Therefore, there is a need for a systematic 

customization approach: Exploration can assist the effective tuning 

of the application and platform design options, in order to satisfy 

the design constraints and achieve the optimization goals. 

Towards this end, in this work, we propose a semi-automatic 

step-by-step exploration methodology for the customization of 

streaming aggregation implemented in embedded systems. The 

methodology is based i) on the identification of the parameters 

of the streaming aggregation operator that affect the evaluation 

metrics and ii) on the identification of the embedded platform 

specification features that affect the evaluation metrics when 

executing streaming aggregation. These parameters compose a 

design space. The methodology provides a set of implementation 

solutions. For each solution, the application and the platform 

parameters have different values. In other words, each customized 

streaming aggregation implementation is tuned differently, so it 

provides different results for each evaluation metric. Developers 

can perform trade-offs between metrics, by selecting different 

customized implementations. Thus, instead of evaluating solutions 

in ad-hoc manner, the proposed approach provides a systematic 

way to explore the design space. 

The main contributions of this work are summarized as follows: 

i. We present a methodology for efficient customization of 

streaming aggregation implementation in embedded systems. 

ii. We show that streaming aggregation implemented on embed- 

ded devices yields significantly higher performance per watt in 

comparison with corresponding HPC and general purpose GPU 

(GPGPU) implementations. 

Finally, based on the experimental results of the demonstration 

of the methodology, we draw interesting conclusions on how each 

one of the application and platform parameters (i.e. design op- 

tions) affects each one of the evaluation metrics. The methodology 

is demonstrated in two streaming aggregation scenarios imple- 

mented in four embedded platforms with different specifications: 

Myriad1, Myriad2, Freescale I.MX.6 Quad and Exynos 5 octa. The 

evaluation metrics are throughput, memory footprint, latency, 

energy consumption and scalability. 

The rest of the paper is organized as follows. Related work 

on streaming aggregation and stream processing on embedded 

systems is presented in Section 2 . Section 3 describes the stream- 

ing aggregation operator and the design challenges. The design 

space and the exploration methodology are presented in Section 4 . 

Section 5 presents the demonstration of the methodology and in 

Section 6 we draw conclusions. 

2. Related work 

Stream processing on various high performance architectures 

has been studied in the past extensively. Many works focus on 

the parallelization of stream processing [7–9] . They describe how 

the stream processing operators should be assigned to partitions 

to increase parallelism. The authors in [10] describe another 

way of improving the performance of streaming aggregation: 

They propose lock-free data structures for the implementation of 

streaming aggregation on multicore architectures. The evaluation 

has been conducted on a 6-core Xeon processor and the results 

show improved scalability. 

With respect to stream processing engines (SPEs), Aurora and 

Borealis [11] are among the most well known ones. Several works 

that focus on the evaluation of stream processing operators on 

specific parallel architectures can be found in the literature. For 

example, an evaluation on heterogeneous architectures composed 

of CPU and a GPU accelerator is presented in [9] . The authors of 

[2] evaluate streaming aggregation implementations on Core 2 

Quad, Nvidia GTX GPU and on Cell Broadband Engine architectures. 

The aggregation model used in this work is more complex, since 

it focuses on timestamp-based tuple processing. 

There exists several works that describe the usage of low power 

embedded processors to run server workloads. More specifically, 

many works propose the integration of low-power ARM processors 

in servers [3,4] , or present energy-efficient clusters built with 

mobile processors [5] . 

In the area of embedded systems stream processing, several 

works focus on compilers that orchestrate parallelism, while they 

handle resource and timing constraints efficiently [12] . A program- 

ming language for stream processing in embedded systems has 

been proposed in [13] . These works are complementary to ours: 

The conclusions we drive from this work could assist the imple- 

mentation of efficient compilers and development frameworks for 

stream programming. 

Design space exploration in embedded systems is another area 

related with the present work. Exploration methodologies have 

been proposed for tuning at system architecture level [14] , for 

customization of dynamic data structures [15] and of dynamic 

memory management optimization [16] . These customization 

approaches are complementary to the one proposed in the present 

work. Performance and energy consumption of streaming aggre- 

gation implementation could improve with effective customization 

of data structures or of the dynamic memory management of the 

system. 

3. Streaming aggregation 

In this Section we provide a description of the streaming 

aggregation operator and we analyze the design challenges of 

implementing a streaming aggregation scenario on an embedded 

platform. 

3.1. Streaming aggregation description 

Streaming aggregation is a very common operator in the area 

of stream processing. It is used to group a set of inbound tuples 

and compute aggregations on their attributes, similarly to the 

group-by SQL statement. In the context of this work, we dis- 

cuss two aggregation scenarios: multiway time-based with sliding 

windows and count-based with tumbling windows . 



Download English Version:

https://daneshyari.com/en/article/460508

Download Persian Version:

https://daneshyari.com/article/460508

Daneshyari.com

https://daneshyari.com/en/article/460508
https://daneshyari.com/article/460508
https://daneshyari.com

