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complicated data, such as high-dimensional data and data on graphs. Some wavelet
techniques applicable to trees as special cases of graph structures have been proposed
that are very computationally efficient and easy to implement. However, a tree is too

Keywords: simple to model a data manifold accurately, in particular since a node has at most one
Wavelet transform parent. In this paper we propose a new efficient wavelet transform applicable to a directed
Hierarchical structured data acyclic graph (DAG), in which nodes are allowed to have multiple parents. Our method
Redundant representation generalizes a Haar-like wavelet on an unweighted tree by using a redundant representation.
Directed acyclic graph In our method, we treat a DAG that has some nodes with signals we wish to analyze

and the remaining nodes without signals. Nodes without signals are used to represent
the underlying hierarchical structure of the data domain. We also describe a practical
application to semi-supervised learning and show that our approach demonstrates an
improvement over tree-based wavelets.
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1. Introduction

The efficient representation of data is one of the key issues in various fields, such as signal processing, data mining,
and machine learning. The appropriate representation is critical for performing data analyses effectively and efficiently. In
recent years, many interesting applications involve data defined on topologically complicated domains, e.g., high-dimensional
structures, irregularly sampled spaces, and nonlinear manifolds. The development of data representation methods applicable
to such complicated data domains is an interesting problem.

The wavelet transform is known to be a powerful harmonic analysis tool for one- and two-dimensional signal processing,
which can localize signals in both space and frequency [1]. Wavelets are widely used in various signal processing problems,
including denoising, data compression, deblurring, and data analysis, because of their ability to sparsely approximate piece-
wise smooth signals. Note that for two-dimensional signals (i.e., images), better representation techniques, such as curvelets
[2], have also been proposed to achieve more sparsity than can wavelets.

The effectiveness of harmonic analysis techniques on low-dimensional spaces motivates the investigation of extensions
to complicated domains. Such data can naturally be modeled as signals defined on the nodes of graphs. The graph Fourier
transform, which provides a harmonic analysis of graph signals, is derived based on the graph Laplacian [3]. As a sparse
representation method, several extensions of the wavelet transform, operating on a graph, have already been proposed [4-6].
Moreover, computationally efficient wavelet transform methods are proposed for data on a tree, which is a special case of
graphs [7-11]. However, a tree has the strong constraint that each node has at most one parent.
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Two types of sparse representation exist: redundant ones and non-redundant ones. Sparse and redundant representations
are widely used and are shown to be highly effective in low-dimensional data analysis [12]. For example, these techniques
can compensate for the lack of the translation-invariance property of non-redundant representations in regular spaced
samples (e.g., [13]). Sparse and redundant representations provide flexibility in representing signals by using overcomplete
vectors. In this paper, we use a sparse and redundant representation to describe the extension of a tree-based wavelet
transform.

We propose a new fast wavelet transform, which we call a multi-link wavelet transform (MLWT), applicable to a directed
acyclic graph (DAG) by using a sparse and redundant representation. A DAG is permitted to have nodes with more than one
parent, and thus is a generalization of a tree. The MLWT can be considered as an extension of a wavelet on an unweighted
tree [7,8,10,11], and can be applicable to any DAG where the sum of weights of all edges connected to each node is one.
DAGs (not trees) are used to represent data structures in many applications: for example, Hasse diagrams [14], gene ontology
[15], a collection of tasks that have dependencies between them [16], and multi-path routing [17]. Since DAGs can represent
more flexible hierarchical structures than trees, the proposed method is expected to be effective.

First, in Section 2, we present an outline of the problem. In Section 3, we then provide the MLWT algorithm and some of
its properties. Experimental results of semi-supervised learning are presented in Section 4, and the last section gives some
conclusions.

2. Problem outline

We consider a graph G = (V, E) consisting of a set of nodes V and a set of edges E C V x V. Signals x[v] € R that we
wish to analyze are defined for some nodes v in V, where R is the set of real numbers. Let Vs be the set of nodes having
signals (Vs C V holds). Nodes without signals, which is in V\ Vs, represent the underlying hierarchical structure of the data
domain. As a simple example, we can treat an image as data on a graph with a regular two-dimensional lattice structure
(in this case, Vs = V). Another example is a tree structure constructed by clustering, where each leaf node represents a data
point (in this case, Vs is the set of leaf nodes), and each non-leaf node represents a cluster containing all of its lower-level
nodes (e.g., [18]). Graphs can model rich geometrical structures, including high-dimensional, irregular, and non-Euclidean
manifolds.

One of the major problems in signal processing on graphs is the estimation of unknown true signals x[v] from given
observations. An example is learning, which involves estimating the missing signals x[v] by using the observed signal
values. Another example is denoising, which involves recovering clean signals x[v] from the noisy version y[v]=x[v]+n[Vv]
contaminated with additive noise n[v]. In many cases, it can be assumed that the true signals are highly related to the
structure of the graph. For instance, it can be considered that when two nodes v and v’ are connected with an edge, the
corresponding signals x[v] and x[v’] tend to be sufficiently close. It is important to represent true signals x[v] effectively by
using the properties of the graph structure to improve the performance of signal processing.

Let N =|Vs| and let x € RN be a vector representing the signal values {x[v]: v € Vs}. An orthogonal wavelet transform
of x is given by & = UTx, where U € R¥*N is an orthogonal matrix (UUT = UTU =1; I is the identity matrix), and a € RN
is referred to as a coefficient vector. Each of the N columns of U is a fundamental element that describes a feature of
the signals, which is called a basis vector (or atom), and x can be represented as linear combination of basis vectors with
weights a: x=Uc.

Gavish et al. [10] proposed a Haar-like orthogonal wavelet transform (OWT) for a tree. An example of a basis of the OWT
is shown in Fig. 1(a). In this example, all N =5 leaves have the corresponding signals and the five filters, h, and gy ,, form
the basis U. The OWT is applicable to any tree, but not a DAG in which at least one node has plural parents.

To capture the important features of the signals effectively, the representation that captures a large part of the signals
with only a few coefficients is required. However, an intrinsic weakness of orthogonal wavelet transforms is: their limited
expressiveness, which is caused by the limited number of basis vectors (only N vectors).

We consider a new wavelet transform applicable to a DAG. The possibility that an orthogonal wavelet transform appli-
cable to such DAGs may be limited in expressiveness as well as complicated and time-consuming brings us to redundant
representation modeling. In redundant representation, a vector x is expressed as ¥ = ®o, where & € RV*S is a matrix that
has S linearly dependent columns (S > N), called frame vectors. Using such a redundant wavelet enables effective represen-
tation of a wider variety of signal types. Fig. 1(b) shows an example of a frame of the MLWT with N =5 and S =7. Note
that if a given DAG is a tree, then the MLWT is equivalent to the OWT.

3. Multi-link wavelets

Let us consider a DAG G = (V,E). If (v,u) € E, then v is called a parent of u and u is called a child of v. Let P[u] be
the set of all parents of u, i.e.,, P[u] ={v: (v,u) € E}, and C[v] be the set of all children of v, i.e., C[v]={u: (v,u) € E}.
We call a node without any child the lowest level node. Let Lo be the set of lowest level nodes and £; (j=1,2,...) be
Li={vé¢Aj_q1: C[vIS Aj_1} where Aj_1 = U,j{;(l) Ly, that is, v € £; if and only if any child of v is an element of Aj_;
but v is not an element of A;_;. We call the index j such that v € £; the level of v. Let | be a natural number satisfying
L;#¢ and L1 =¢ (¢: the empty set). Note that V =A; = U;{:o Ly and the union is disjoint, i.e., £; N Ly = ¢ for any
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