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This paper develops new theory and algorithms to recover signals that are approximately
sparse in some general dictionary (i.e., a basis, frame, or over-/incomplete matrix)
but corrupted by a combination of interference having a sparse representation in a
second general dictionary and measurement noise. The algorithms and analytical recovery
conditions consider varying degrees of signal and interference support-set knowledge.
Particular applications covered by the proposed framework include the restoration of
signals impaired by impulse noise, narrowband interference, or saturation/clipping, as well
as image in-painting, super-resolution, and signal separation. Two application examples for
audio and image restoration demonstrate the efficacy of the approach.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

We investigate the recovery problem of the coefficient vector x ∈ C
Na from the corrupted M-dimensional observations

z = Ax + Be + n, (1)

where A ∈ C
M×Na and B ∈ C

M×Nb are general deterministic dictionaries; examples for general dictionaries include bases,
frames, or over-/incomplete matrices whose columns have unit Euclidean (or �2) norm. The vector x is assumed to be
approximately sparse, i.e., its main energy (in terms of the sum of absolute values, for example) is concentrated in only a few
entries. The M-dimensional signal vector is defined as y = Ax. The vector e ∈ C

Na represents interference and is assumed
to be perfectly sparse, i.e., only a few entries are nonzero, and n ∈ C

M corresponds to measurement noise. Apart from the
bound ‖n‖2 < ε, the measurement noise is arbitrary. We emphasize that the interference and noise components e and n
can depend on the vector x and/or the dictionary A.

The setting (1) also allows us to study signal separation, i.e., the separation of two distinct features Ax and Be from the
noisy observation z. Here, the vector e in (1) is also allowed to be approximately sparse and is used to represent a second
desirable feature (rather than undesired interference). Signal separation amounts to simultaneously recovering the vectors x
and e from the noisy measurement z followed by computation of the individual signal features Ax and Be.
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1.1. Applications for the model (1)

Both the recovery and separation problems outlined above feature prominently in numerous applications (see [1–18] and
the references therein), including:

• Impulse noise: The recovery of approximately sparse signals corrupted by impulse noise [13] corresponds to recovery
of x from (1) by setting B = IM and associating the interference e with the impulse-noise vector. Practical examples
include restoration of audio signals impaired by click/pop noise [1,2] and reading from unreliable memories [14].

• Narrowband interference: Audio, video, and communication signals are often corrupted by narrowband interference.
A particular example is electric hum, which typically occurs in improperly designed audio or video equipment. Such
impairments naturally exhibit a sparse representation in the frequency domain, which amounts to setting B to the
inverse discrete Fourier transform matrix.

• Saturation and clipping: Nonlinearities in amplifiers may result in signal saturation, cf. [7,16,17]. Here, instead of the
signal vector y of interest, one observes a saturated (or clipped) version z = y + e + n, where the nonzero entries of e
correspond to the difference between the saturated signal and the original signal y. The noise vector n can be used to
model residual errors that are not captured by the interference component Be.

• Super-resolution and in-painting: In super-resolution [3,15] and in-painting [6,8–10] applications, only a subset of the
entries of the (full-resolution) signal vector y = Ax is available. With (1), the interference vector e accounts for the
missing parts of the signal, i.e., the locations of the nonzero entries of e correspond to the missing entries in y and are
set to some arbitrary value. The missing parts of y are then filled in by recovering x from z = Ax + e + n followed by
computation of the (full-resolution) signal vector y = Ax.

• Signal separation: The framework (1) can be used to model the decomposition of signals into two distinct features.
Prominent application examples are the separation of texture from cartoon parts in images [4,6,18] and the separation
of neuronal calcium transients from smooth signals caused by astrocytes in calcium imaging [5]. In both applications,
A and B are chosen such that each feature can be represented by approximately sparse vectors in one dictionary.
Signal separation then amounts to simultaneously extracting x and e from z, where Ax and Be represent the individual
features.

In many applications outlined above, a predetermined (and possibly optimized) dictionary pair A and B is used. It is
therefore of significant practical interest to identify the fundamental limits on the performance of restoration or separation
from the model (1) for the deterministic setting, i.e., assuming no randomness in the dictionaries, the signal, interference,
or the noise vector. Deterministic recovery guarantees for the special case of perfectly sparse vectors x and e and no mea-
surement noise have been studied in [12,19]. The results in [12,19] rely on an uncertainty relation for pairs of general
dictionaries and depend on the number of nonzero entries in x and e, on the coherence parameters of the dictionaries A
and B, and on the amount of prior knowledge on the support of the signal and interference vector. However, the algorithms
and proof techniques used in [12,19] cannot be adapted for the general (and practically more relevant) setting formulated
in (1), which features approximately sparse signals and additive measurement noise.

1.2. Contributions

In this paper, we generalize the recovery guarantees of [12,19] to the framework (1) detailed above. In particular, we
provide computationally efficient restoration and separation algorithms and derive corresponding recovery guarantees for
the deterministic setting. Our guarantees depend in a natural way on the number of dominant nonzero entries of x and e,
on the coherence parameters of the dictionaries A and B, and on the Euclidean norm of the measurement noise. Our
results also depend on the amount of knowledge on the location of the dominant entries available prior to recovery. In
particular, we investigate the following cases: (1) The locations of the dominant entries of the approximately sparse vector
x and the support set of the perfectly sparse interference vector e are known (prior to recovery), (2) only the support
set of the interference vector e is known, and (3) no support-set knowledge about x and e is available. Moreover, we
present coherence-based bounds on the restricted isometry constants (RICs) for all these cases, which can be used to
derive alternative recovery conditions. We provide a comparison to the recovery conditions for perfectly sparse signals
and noiseless measurements presented in [12,19]. Finally, we demonstrate the efficacy of the proposed approach with two
representative applications: restoration of audio signals impaired by a mixture of impulse noise and Gaussian noise, and
removal of scratches from color photographs.

1.3. Notation

Lowercase and uppercase boldface letters stand for column vectors and matrices, respectively. The transpose, conjugate
transpose, and (Moore–Penrose) pseudo-inverse of the matrix M are denoted by MT , MH , and M† = (MH M)−1MH , respec-
tively. The kth entry of the vector m is [m]k , and the kth column of M is mk and the entry in the kth row and �th
column is designated by [M]k,� . The M × M identity matrix is denoted by IM and the M × N all zeros matrix by 0M×N .
The Euclidean (or �2) norm of the vector x is denoted by ‖x‖2, ‖x‖1 = ∑

k |[x]k| stands for the �1-norm of x, and ‖x‖0
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