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One key step in solving partial differential equations using adaptive wavelet methods is
the ability to efficiently apply an operator to a wavelet expansion. Whereas this problem
has been generally solved in theory, the known solution is still a little slow and hard to
implement. Here, we propose a more practical algorithm for a useful set of linear operators
containing in particular all linear differential operators. Our algorithm is general as it works
for many wavelet systems. It is fast as it is linear with a small constant factor. It is exact
as coefficients are computed without approximation. It is simple since the matrix entries of
the operator need to be known only for wavelets at the same scale.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Background

Since a few years, there has been a lot of progress made on the use of wavelets for solving partial differential equations
(PDE). A key step has been the article by Cohen et al. [1] which shows that solving such PDE using adaptive wavelet methods
was possible and efficient. For an overview of the subject, see [2–4].

One of the key steps of the method (called “APPLY”) computes the result of the adaptive application of the operator on
some wavelet expansion. For this to work, they devised an approximation scheme able to compute an N-term expansion of
the result in time O (N) with sufficient accuracy. They supposed that matrix elements of the operator could be computed
in time O (1). This was later proven by Gantumur and Stevenson [5] for differential operators on piecewise polynomial
wavelets (and generalizations thereof).

While this is a big step forward, there are some difficulties left. Here, we want to deal with three of them: (i) the
prefactor in O (N) is large (see below), (ii) the Gantumur result does not apply to all wavelet systems such as Daubechies
wavelets for which one must rely on the refinement equation to compute matrix elements, (iii) the algorithm is non-local
on the wavelet coefficients tree, which slows and complexifies the implementation (the “curse of data structure” of A. Cohen
in [2, p. 318]). This last point is particularly true with sophisticated wavelet systems such as domain adapted wavelets [6–8].

An interesting progress was made by Barinka et al. [9] by cleverly using the refinement equation in a very general setting.
Here, we develop on this idea in a slightly less general setting. For a restricted set of linear operators, which we call finite
width operators (which nevertheless contains among others all linear differential operators), we devised an algorithm to
compute the coefficients of the adaptive application of the operator to a wavelet expansion. Here, we are only focused on
the way to compute those coefficients, not on the way to choose which coefficients to compute. This algorithm is general,
fast, fully exact as no approximations are made, and relatively easy to implement and use. One of the key ingredients is the
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fact that the matrix entries need to be known only level by level. That is, we do not need the matrix entries for wavelets at
different scales.

1.2. Road map

In the first section, we set up a very general framework in a similar way as Barinka et al. [9] and make some definitions,
in particular we define what we call finite width operators.

In the following section, we present three algorithms. The first is inspired by [9], it is fast and exact but only works
on a restricted set of operators. It is moreover strongly unstable in some cases. Here, it is important to note, that one is
confronted to the same kind of instability when directly computing entries of the operator matrix at very different wavelet
scales using the refinement equation.

To cure these problems, we develop another algorithm which is still exact, faster, more stable and works on our full set
of finite width operators. We think this algorithm should become the standard in the future. Unfortunately, this algorithm
is also unstable in some extreme cases.

We try to cure this instability in a third experimental algorithm. This algorithm tracks an estimated error with each
computed quantity and neglect them when too much signal is lost.

In the last section, we present some numerical experiments with examples of instability. We show how our second
algorithm outperforms the first and how our last algorithm is indeed able to prevent instability in some cases.

2. Wavelets, expansions and operators

2.1. Wavelets

There are many ways to build a system of wavelets. In order to stay general, we will not commit to one system, but we
will rather state properties we want our wavelet system to possess. Most relevant wavelet systems have the properties we
describe below. This includes for example: (i) [0,1] with periodic boundary conditions equipped with Daubechies wavelets
or bi-orthogonal spline wavelets, (ii) [0,1] with open boundaries with Daubechies or spline wavelets, with edge wavelets at
the extremities, (iii) any product of the previous cases, (iv) more involved constructions to adapt wavelets on more general
domains such as [6–8].

We will work in a finite domain Ω ⊂ R
d equipped with a bi-orthogonal system of compact wavelets on Ω with the

following properties.

2.1.1. Structure of the wavelet system
We start with an infinite index set I to represent the scale and position of the wavelets. Every λ ∈ I has a level noted

|λ| ∈N and we note

I j = {
λ

∣∣ λ ∈ I, |λ| = j
}
, (1)

and we suppose that all I j are finite sets of cardinal �I j with

c2 jd � �I j � C2 jd, (2)

where c and C are strictly positive constants (independent of j). To simplify notations, we will rewrite such constraints by
rewriting x � C y for some constant C as x � y and if x � y and y � x then we write x ∼ y. Moreover, to shorten many
equations, we also set

α = 2
d
2 . (3)

We thus have

�I j ∼ α2 j . (4)

Finally we note

I∞
j =

⋃
j′� j

I j′ . (5)

Every λ ∈ I j (with j > 0) has a unique parent λ↓ ∈ I j−1. We note μ ≺ λ when μ is an ancestor of λ (i.e. μ = λ↓, λ↓↓, . . .)
and μ� λ when equality is possible. Likewise we note λ↑ the set of children of λ and we suppose that this set is finite with

�λ↑ ∼ α2. (6)
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