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We provide another framework of iterative algorithms based on thresholding, feedback
and null space tuning for sparse signal recovery arising in sparse representations and
compressed sensing. Several thresholding algorithms with various feedbacks are derived.
Convergence results are also provided. The core algorithm is shown to converge in finitely
many steps under a (preconditioned) restricted isometry condition. The algorithms are seen
as exceedingly effective and fast, particularly for large scale problems. Numerical studies
about the effectiveness and the speed of the algorithms are also presented.
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1. Introduction

A basic underdetermined linear inverse problem is about the solution to the system of linear equations

Ax = b, (1)

where A ∈Rn×N (n � N) and b ∈Rn are known. In the past few years, sparsity constraint has been a popular regularization
approach toward the solution of such inverse problems. The problems of sparse representation and compressed sensing are
typical examples.

The goal of sparse representation is to approximate a signal b by a linear combination of the least number elementary
signals/columns of (a dictionary) A, that is, to find the sparsest coefficient x such that Ax = b. In compressed sensing, signals
are assumed to be sparse in some transform domain. The ultimate goal is also to recover the sparse coefficient x (and the
signal) from a surprisingly small number of linear measurements of (fundamentally) the same form Ax = b. Evidently, the
common problem here involves finding the sparsest solutions satisfying the linear equations. In other words, one wishes to
solve an �0-minimization problem
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(P0) min
x∈RN

‖x‖0 s.t. Ax = b,

where ‖ · ‖0 is a quasi-norm standing for the number of the nonzero entries.
(P0) is clearly combinatorial in nature, and NP-hard in general [1]. The renowned advances in this area lie fundamentally

in the replacement of (P0) with a convex relaxation

(P1) min
x∈RN

‖x‖1 s.t. Ax = b.

See a series of articles dealing with the equivalence between (P0) and (P1), e.g., [2–9]. Apparently, (P1) can also be solved
by interior-point methods, such as [10,11] and a number of other different means.

Among others, “greedy algorithms” are another class of popular approaches of finding sparse solutions. Two typical
representative approaches are Matching Pursuit (MP) and Orthogonal Matching Pursuit (OMP), e.g., [12–14]. In addition,
a number of variants of the greedy pursuit algorithms have also been proposed by various authors, e.g., stagewise orthogonal
matching pursuit (StOMP) [15], compressive sampling matching pursuit (CoSaMP) [16] and subspace pursuit (SP) [17], etc.

A third class of algorithms for sparse solutions to underdetermined linear inverse problems are iterative threshold-
ing/shrinkage algorithms, which are known for their simplicity. Most iterative thresholding/shrinkage algorithms are moti-
vated by minimizing a cost function, which combines a quadratic error term with a sparsity-promoting regularization term,
for instance,

min
x∈RN

1

2
‖Ax − b‖2

2 + λ‖x‖1.

Various iterative hard/soft thresholding algorithms [18–25], gradient-descent methods [26–28], and Bregman itera-
tions [29,30] are representatives. Among this class of works, an algorithm [31] that replaces the �1-regularization term
by λ‖x‖0 is proposed by Blumensath and Davies. An iterative hard thresholding (IHT) algorithm within the majorization mi-
norization (MM) framework is analyzed [32]. It was also shown that IHT converges to a local minimum of the �0-regularized
cost function under some conditions.

In [33], Donoho and Maliki combine an exact solution to a small linear system with thresholding before and after the
solution to derive a more sophisticated scheme, named two-stage thresholding (TST) method. Very recently, Foucart has
proposed a hard thresholding pursuit (HTP) algorithm [34]. In essence, HTP can be regarded as a hybrid of IHT and CoSaMP.

In this article, a class of algorithms combining thresholding, feedbacks and null space tuning is proposed to find sparse
solutions. The proposed algorithms are brought into a concise framework of null space tuning (NST). Several sparsity enhanc-
ing operators are incorporated into the NST framework to develop various algorithms. These algorithms are shown to be
exceedingly fast and effective. Results about the theoretical performance and convergence are also presented.

The organization of this article is as follows. A brief description of the common framework of null space tuning is given
in Section 2. The core algorithm, null space tuning with hard thresholding and feedback (NST + HT + FB), is introduced
in Section 3. In Section 4, we present two other algorithms possessing the feedback nature, along with a brief study of
the computational issues of the NST based algorithms. Section 5 is dedicated to the theoretical convergence studies of the
NST + HT + FB algorithms. We show that the algorithm allows stable recovery of sparse vectors if the measurement matrix
satisfies commonly known conditions. Extensive numerical tests and comparisons are presented in Section 6 to justify the
advantages of the algorithms in practice.

2. A common framework of the approximation and null space tuning algorithms

Throughout this article, A is commonly assumed to have full (row) rank. We propose the following iterative framework
of the approximation and null space tuning (NST) algorithms

(NST)

{
uk = D

(
xk

)
,

xk+1 = xk + P
(
uk − xk

)
.

Here D(xk) approximates the desired solution by various principles, and P := I − A∗(A A∗)−1 A is the orthogonal projection
onto ker A. The feasibility of x0 is assumed, which guarantees that the sequence {xk} are all feasible. Obviously, uk → x is
expected as k increases.

Due to the feasibility of the sequence {xk}, the NST step can be rewritten as

xk+1 = xk + P
(
uk − xk)

= xk + [
I − A∗(A A∗)−1

A
](

uk − xk)
= uk + A∗(A A∗)−1(

b − Auk), (2)

which indicates that xk+1 − uk is perpendicular to the hyperplane {x: Ax = b}. Therefore, xk+1 is the orthogonal projection
of uk onto the feasible set.
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