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Nonlinear dimensionality reduction embeddings computed from datasets do not provide
a mechanism to compute the inverse map. In this paper, we address the problem of
computing a stable inverse map to such a general bi-Lipschitz map. Our approach relies
on radial basis functions (RBFs) to interpolate the inverse map everywhere on the low-
dimensional image of the forward map. We demonstrate that the scale-free cubic RBF
kernel performs better than the Gaussian kernel: it does not suffer from ill-conditioning,
and does not require the choice of a scale. The proposed construction is shown to be
similar to the Nyström extension of the eigenvectors of the symmetric normalized graph
Laplacian matrix. Based on this observation, we provide a new interpretation of the
Nyström extension with suggestions for improvement.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The construction of parametrizations of low dimensional data in high dimension is an area of intense research (e.g.,
[1–4]). A major limitation of these methods is that they are only defined on a discrete set of data. As a result, the inverse
mapping is also only defined on the data. There are well known strategies to extend the forward map to new points—for
example, the Nyström extension is a common approach to solve this out-of-sample extension problem (see e.g., [5] and refer-
ences therein). However, the problem of extending the inverse map (i.e. the preimage problem) has received little attention
so far (but see [6]). The nature of the preimage problem precludes application of the Nyström extension, since it does not
involve extension of eigenvectors.

We present a method to numerically invert a general smooth bi-Lipschitz nonlinear dimensionality reduction mapping
over all points in the image of the forward map. The method relies on interpolation via radial basis functions of the
coordinate functions that parametrize the manifold in high dimension.

The contributions of this paper are twofold. Primarily, this paper addresses a fundamental problem for the analysis of
datasets: given the construction of an adaptive parametrization of the data in terms of a small number of coordinates, how
does one synthesize new data using new values of the coordinates? We provide a simple and elegant solution to solve
the “preimage problem”. Our approach is scale-free and numerically stable and can be applied to any nonlinear dimension
reduction technique. The second contribution is a novel interpretation of the Nyström extension as a properly rescaled
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radial basis function interpolant. A precise analysis of this similarity yields a critique of the Nyström extension, as well as
suggestions for improvement.

2. The inverse mapping

2.1. Definition of the problem, and approach

We consider a finite set of n datapoints {x(1), . . . , x(n)} ⊂ R
D that lie on a bounded low-dimensional smooth manifold

M⊂ R
D , and we assume that a nonlinear mapping has been defined for each point x(i) ,

Φn : M ⊂ R
D −→ R

d (1)

x(i) �−→ y(i) = Φn
(
x(i)), i = 1, . . . ,n. (2)

We further assume that the map Φn converges toward a limiting continuous function, Φ : M → Φ(M), when the number
of samples goes to infinity. Such limiting maps exist for algorithms such as the Laplacian eigenmaps [2].

In practice, the construction of the map Φn is usually only the first step. Indeed, one is often interested in exploring
the configuration space in R

d , and one needs an inverse map to synthesize a new measurement x for a new configuration
y = [ y1 · · · yd ]T in the coordinate domain (see e.g., [7]). In other words, we would like to define an inverse map Φ−1

n (y)

at any point y ∈ Φn(M). Unfortunately, unlike linear methods (such as PCA), nonlinear dimension reduction algorithms
only provide an explicit mapping for the original discrete dataset {x(1), . . . , x(n)}. Therefore, the inverse mapping Φ−1

n is
only defined on these data.

The goal of the present work is to generate a numerical extension of Φ−1
n to all of Φ(M) ⊂ R

d . To simplify the prob-
lem, we assume the mapping Φn coincides with the limiting map Φ on the data, Φn(x(i)) = Φ(x(i)) for i = 1, . . . ,n. This
assumption allows us to rephrase the problem as follows: we seek an extension of the map Φ−1 everywhere on Φ(M),
given the knowledge that Φ−1(y(i)) = Φ−1

n (y(i)) = x(i) . We address this problem using interpolation, and we construct an

approximate inverse Φ
†
n , which converges toward the true inverse as the number of samples, n, goes to infinity,

Φ† : Φ(M) →R
D , with Φ†(y(i)) = x(i), (3)

and ∀y ∈ Φ(M), lim
n→∞Φ

†
n(y) = Φ−1(y). (4)

Using terminology from geometry, we call Φ(M) the coordinate domain, and Φ−1 a coordinate map that parametrizes the
manifold M = {x ∈ R

D; x = Φ−1(y), y ∈ Φ(M)}. The components of Φ−1 = [φ−1
1 · · · φ−1

D ]T are the coordinate functions.
We note that the focus of the paper is not the construction of new points y in the coordinate domain, but rather the
computation of the coordinate functions everywhere in Φ(M).

2.2. Interpolation of multivariate functions defined on scattered data

Given the knowledge of the inverse at the points y(i) , we wish to interpolate Φ−1 over Φ(M). We propose to interpolate
each coordinate function, φ−1

i (y), i = 1, . . . , D independently of each other. We are thus facing the problem of interpolat-
ing a function of several variables defined on the manifold Φ(M). Most interpolation techniques that are designed for
single variable functions can only be extended using tensor products, and have very poor performance in several dimen-
sions. For instance, we know from Mairhuber theorem (e.g., [8]) that we should not use a basis independent of the nodes
(for example, polynomial) to interpolate scattered data in dimension d > 1. As a result, few options exist for multivariate
interpolation. Some of the most successful interpolation methods involve Radial Basis Functions (RBFs) [8]. Therefore, we
propose to use RBFs to construct the inverse mapping. Similar methods have been explored in [6,9] to interpolate data
on a low-dimensional manifold. We note that while kriging [10] is another common approach for interpolating scattered
data, most kriging techniques are equivalent to RBF interpolants [11]. In fact, because in our application we lack specialized
information about the covariance structure of the inverse map, kriging is identical to RBF interpolation.

We focus our attention on two basis functions: the Gaussian and the cubic. These functions are representative of the
two main classes of radial functions: scale dependent, and scale invariant. In the experimental section we compare the RBF
methods to Shepard’s method [12], an approach for multivariate interpolation and approximation that is used extensively in
computer graphics [13], and which was recently proposed in [14] to compute a similar inverse map.

For each coordinate function φ−1
i , we define φ

†
i to be the RBF interpolant to the data (y( j), x( j)),

for all y ∈ Φ(M), φ
†
i (y) =

n∑
j=1

α
( j)
i k

(
y, y( j)). (5)

The reader will notice that we dropped the dependency on n (number of samples) in Φ† = [
φ

†
1 · · · φ

†
D

]T to ease readability.

The function k in (5) is the kernel that defines the radial basis functions, k(z, w) = g(‖z − w‖). The weights, {α(1)
i , . . . ,α

(n)
i },
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