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This paper deals with optimal estimations over LP (1 < p < oo) risk for moderately ill-
posed noises. A lower bound of LP risk is firstly provided, which generalizes Fan-Koo
and Lounici-Nickl’'s theorems; then we define a linear and non-linear wavelet estimators,

Keywords: motivated by Fan-Koo and Pensky-Vidakovic’s work. The linear one is rate optimal for
Wavelet estimation r > p, and the non-linear estimator attains suboptimal (optimal up to a logarithmic factor).
Density function These results can be considered as an extension of some theorems of Donoho et al. (1996)
Besov spaces [10]. In addition, our non-linear wavelet estimator is adaptive to the indices s, r, ¢ and L.
Additive noise © 2013 Elsevier Inc. All rights reserved.
Optimality

1. Introduction and preliminary

The density estimation for a statistical model with additive noise plays important roles in both statistics and economet-
rics [17]. More precisely, let Y1, Y2, ..., Y, be independent and identically distributed (i.i.d.) random variables of

Y=X+e, (11)

where X stands for real-valued random variable with unknown probability density f:R — RT and € denotes an indepen-
dent random noise (error) with the probability density ¢. The problem is to estimate f by Yq,Y,,...,Y, in some sense.

As a deconvolution problem, the density g of Y equals to the convolution of f and ¢. In particular, (1.1) reduces to the
classical model with no errors, when ¢ degenerates to the Dirac functional § (g = f *§ = f in that case). The traditional
kernel method deals with that problem effectively [1,23,24]. However, it has two disadvantages: the first is the complexity
of band choice for some densities; the second one: as a linear estimation, it doesn’t give optimal convergence rates in many
cases.

Another classical method, the Fourier based deconvolution, turns out to be effective for periodic densities under super
smooth noises [4,11]. However, the Fourier system {ei",n € Z} is orthogonal in L[0, 27r], it can’t deal with aperiodic cases.
Wavelets can, because a wavelet system constitutes an orthonormal basis of LZ(R). Furthermore, a non-linear wavelet esti-
mator (defined by thresholding) gives a better estimation than the classical methods, due to time and frequency localization
of wavelet bases [10,13]. In addition, wavelets provide fast algorithm, which is important in numerical computations.

In 1996, Delyon and Juditsky [6] investigated the density estimation (without error) by compactly supported wavelets.
Pensky and Vidakovic, Walter [20,25] studied Meyer wavelet estimation for densities in Sobolev space W3 (R) in 1999; three
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years later, Fan and Koo considered wavelet estimation over L? risk and Besov space Bﬁ’q(]R) with 1 <r <2 [13]. In 2011,
Lounici and Nickl investigated optimal estimation over B, ., (R) and L* risk by wavelet method [19].

This paper deals with L? (1 < p < 0o) risk estimation, which includes the important cases L!, L? and L™ risk estimations
in Bﬁyq(R) (g, €[1, 00]) for moderately ill-posed noises by using wavelet bases. Section 1.1 introduces some notations and
classical results on wavelets and Besov spaces, which will be used in our discussions; the main results are presented in
Section 1.2. We shall discuss some relations to the work in [10,13,19,20,25]. In order to prove our theorems in the last two
sections, we show several lemmas in Section 2.

1.1. Some preparations

We begin with the concept of multiresolution analysis (MRA, [5]), which is a sequence of closed subspaces {V;}jcz of
the square integrable function space L?(R) satisfying the following properties:

(i) V; € Vj41, Vj € Z. Here and after, Z denotes the integer set and N:={ne Z, n > 0};
(i)) Ujez Vj = L2®);
(iii) There exists ¢(x) € L>(R) (scaling function) such that {¢(x — k)}xez forms an orthonormal system and Vo =
span{¢(x — k)}.

With the standard notation h j(x) := Z%h(zjx — k) in wavelet analysis, we can derive a corresponding wavelet (function)

Y =Y (=D kpux)  with by = (¢, pui)
keZ
such that for a fixed j € Z, {¥/jx(x)}xez constitutes an orthonormal basis of the orthogonal complement W of V; in V.
Moreover, for fixed | € N, both {¢ (%), ¥jk(¥)}j>]kez and {Yi(x)}jkez are orthonormal bases of L%(R) [5]. Then each
f € L>(R) has two expansions in L?(R) sense

f=) apbp+) Y v and f= " Bivi
keZ j=>] keZ Jj.keZ

with ajx := (f, k) and Bjx := (f, ¥ji).
As usual, let Pj and Q; be the orthogonal projections from L*(R) to Vj and W respectively,

Pif=) apdi.  Qif =) Bivjx=(Pjz1—P)f.
keZ keZ
Then f=P;f+352,Q;f.
Two important examples are Meyer and Daubechies’ wavelets. To introduce Meyer wavelets, we need the Fourier trans-
form of f € L(R),

f(t) = (Ff)(t)Z/f(x)e—itde.
R

The classical method extends that definition to L*(R) functions (as a matter of fact, we can define the Fourier transform
]‘ of a generalized function f as well. In particular, when § is the Dirac functional, 5= 1). A Meyer wavelet i satisfies
1} € C*(R) and the support of 1} contained in {t: ZT” <t < %”}. Daubechies wavelets Doy (N =1,2,...) are compactly
supported in time domain. They can be smooth enough with increasing supports as N gets large, although D,y don’t have
analytic formulae except for N =1.

The following simple lemma is fundamental in our discussions. We use | f||, to denote LP(R) norm for f € L?(R), and
[Allp does IP(Z) norm for A € IP(Z), where

{)" = {)\'k}a ZkeZ |)"k|p < 00}7 p < 05

°(Z) := {
{A‘ = {)\‘k}r SupkEZ |)\‘k| < OO}’ p = 00.

Lemma 1.1. (See [14].) Let h be a scaling function or a wavelet with 6 (h) := supycg Y [h(x — k)| < co. Then, there exist C; > C1 > 0
such that for A = {\;} € IP(Z) and 1 < p < 00,

> Mchi

keZ
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