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Using wavelet methods, Fan and Koo study optimal estimations for a density with some
additive noises over a Besov ball Bs

r,q(L) (r,q � 1) and over L2 risk (Fan and Koo,
2002 [13]). The L∞ risk estimations are investigated by Lounici and Nickl (2011) [19].
This paper deals with optimal estimations over Lp (1 � p � ∞) risk for moderately ill-
posed noises. A lower bound of Lp risk is firstly provided, which generalizes Fan–Koo
and Lounici–Nickl’s theorems; then we define a linear and non-linear wavelet estimators,
motivated by Fan–Koo and Pensky–Vidakovic’s work. The linear one is rate optimal for
r � p, and the non-linear estimator attains suboptimal (optimal up to a logarithmic factor).
These results can be considered as an extension of some theorems of Donoho et al. (1996)
[10]. In addition, our non-linear wavelet estimator is adaptive to the indices s, r, q and L.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction and preliminary

The density estimation for a statistical model with additive noise plays important roles in both statistics and economet-
rics [17]. More precisely, let Y1, Y2, . . . , Yn be independent and identically distributed (i.i.d.) random variables of

Y = X + ε, (1.1)

where X stands for real-valued random variable with unknown probability density f :R → R
+ and ε denotes an indepen-

dent random noise (error) with the probability density ϕ . The problem is to estimate f by Y1, Y2, . . . , Yn in some sense.
As a deconvolution problem, the density g of Y equals to the convolution of f and ϕ . In particular, (1.1) reduces to the

classical model with no errors, when ϕ degenerates to the Dirac functional δ (g = f ∗ δ = f in that case). The traditional
kernel method deals with that problem effectively [1,23,24]. However, it has two disadvantages: the first is the complexity
of band choice for some densities; the second one: as a linear estimation, it doesn’t give optimal convergence rates in many
cases.

Another classical method, the Fourier based deconvolution, turns out to be effective for periodic densities under super
smooth noises [4,11]. However, the Fourier system {eint,n ∈ Z} is orthogonal in L2[0,2π ], it can’t deal with aperiodic cases.
Wavelets can, because a wavelet system constitutes an orthonormal basis of L2(R). Furthermore, a non-linear wavelet esti-
mator (defined by thresholding) gives a better estimation than the classical methods, due to time and frequency localization
of wavelet bases [10,13]. In addition, wavelets provide fast algorithm, which is important in numerical computations.

In 1996, Delyon and Juditsky [6] investigated the density estimation (without error) by compactly supported wavelets.
Pensky and Vidakovic, Walter [20,25] studied Meyer wavelet estimation for densities in Sobolev space W s

2(R) in 1999; three
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years later, Fan and Koo considered wavelet estimation over L2 risk and Besov space Bs
r,q(R) with 1 � r � 2 [13]. In 2011,

Lounici and Nickl investigated optimal estimation over Bs∞,∞(R) and L∞ risk by wavelet method [19].
This paper deals with Lp (1 � p � ∞) risk estimation, which includes the important cases L1, L2 and L∞ risk estimations

in Bs
r,q(R) (q, r ∈ [1,∞]) for moderately ill-posed noises by using wavelet bases. Section 1.1 introduces some notations and

classical results on wavelets and Besov spaces, which will be used in our discussions; the main results are presented in
Section 1.2. We shall discuss some relations to the work in [10,13,19,20,25]. In order to prove our theorems in the last two
sections, we show several lemmas in Section 2.

1.1. Some preparations

We begin with the concept of multiresolution analysis (MRA, [5]), which is a sequence of closed subspaces {V j} j∈Z of
the square integrable function space L2(R) satisfying the following properties:

(i) V j ⊆ V j+1, ∀ j ∈ Z. Here and after, Z denotes the integer set and N := {n ∈ Z, n � 0};

(ii)
⋃

j∈Z V j = L2(R);

(iii) There exists φ(x) ∈ L2(R) (scaling function) such that {φ(x − k)}k∈Z forms an orthonormal system and V 0 =
span{φ(x − k)}.

With the standard notation h jk(x) := 2
j
2 h(2 j x − k) in wavelet analysis, we can derive a corresponding wavelet (function)

ψ(x) =
∑
k∈Z

(−1)kh1−kφ1k(x) with hk = 〈φ,φ1k〉

such that for a fixed j ∈ Z, {ψ jk(x)}k∈Z constitutes an orthonormal basis of the orthogonal complement W j of V j in V j+1.
Moreover, for fixed J ∈ N, both {φ Jk(x), ψ jk(x)} j� J ,k∈Z and {ψ jk(x)} j,k∈Z are orthonormal bases of L2(R) [5]. Then each
f ∈ L2(R) has two expansions in L2(R) sense

f =
∑
k∈Z

α Jkφ Jk +
∑
j� J

∑
k∈Z

β jkψ jk and f =
∑
j,k∈Z

β jkψ jk

with α jk := 〈 f , φ jk〉 and β jk := 〈 f ,ψ jk〉.
As usual, let P j and Q j be the orthogonal projections from L2(R) to V j and W j respectively,

P j f =
∑
k∈Z

α jkφ jk, Q j f =
∑
k∈Z

β jkψ jk = (P j+1 − P j) f .

Then f = P J f +∑∞
j= J Q j f .

Two important examples are Meyer and Daubechies’ wavelets. To introduce Meyer wavelets, we need the Fourier trans-
form of f ∈ L(R),

f̂ (t) := (F f )(t) =
∫
R

f (x)e−itx dx.

The classical method extends that definition to L2(R) functions (as a matter of fact, we can define the Fourier transform
f̂ of a generalized function f as well. In particular, when δ is the Dirac functional, δ̂ = 1). A Meyer wavelet ψ satisfies
ψ̂ ∈ C∞(R) and the support of ψ̂ contained in {t: 2π

3 � |t| � 8π
3 }. Daubechies wavelets D2N (N = 1,2, . . .) are compactly

supported in time domain. They can be smooth enough with increasing supports as N gets large, although D2N don’t have
analytic formulae except for N = 1.

The following simple lemma is fundamental in our discussions. We use ‖ f ‖p to denote Lp(R) norm for f ∈ Lp(R), and
‖λ‖p does lp(Z) norm for λ ∈ lp(Z), where

lp(Z) :=
{ {λ = {λk}, ∑k∈Z |λk|p < ∞}, p < ∞;

{λ = {λk}, supk∈Z |λk| < ∞}, p = ∞.

Lemma 1.1. (See [14].) Let h be a scaling function or a wavelet with θ(h) := supx∈R
∑

k |h(x −k)| < ∞. Then, there exist C2 � C1 > 0
such that for λ = {λk} ∈ lp(Z) and 1 � p � ∞,

C12 j( 1
2 − 1

p )‖λ‖p �
∥∥∥∥∑

k∈Z
λkh jk

∥∥∥∥
p

� C22 j( 1
2 − 1

p )‖λ‖p .
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