
Journal of Systems Architecture 66-67 (2016) 69–83 

Contents lists available at ScienceDirect 

Journal of Systems Architecture 

journal homepage: www.elsevier.com/locate/sysarc 

An optimal allocation of memory buffers for complex multicore 

platforms 

Andrés Goens a , Jeronimo Castrillon 

a , ∗, Maximilian Odendahl b , Rainer Leupers b 

a Chair for Compiler Construction, cfaed, TU Dresden, Dresden, Germany 
b Institute for Communication Technologies and Embedded Systems, RWTH Aachen University, Aachen, Germany 

a r t i c l e i n f o 

Article history: 

Received 20 March 2015 

Revised 26 February 2016 

Accepted 9 May 2016 

Available online 10 May 2016 

Keywords: 

Optimization 

Memory and buffer allocation 

Mixed integer linear programming 

Multicore 

MPSoC 

a b s t r a c t 

In deeply embedded heterogeneous multicores the allocation of data to memories is crucial for appli- 

cation performance. For applications with stringent throughput constraints, the allocation is often done 

manually by carefully assigning static memory locations to the logical buffers of the application. Today, 

designers are confronted with applications with thousands of buffers and architectures with hundreds of 

memories, rendering manual approaches impractical. In this paper we present an automatic approach for 

statically allocating logical buffers to physical memories, assuming a fixed task-to-processor mapping and 

respecting multiple throughput constraints. 

In our approach, we model the application in a data-centric way, by explicitly defining buffers and asso- 

ciating computational tasks that access the buffers within well-specified time intervals. Besides, we use 

an architecture model that allows to perform an allocation that is aware of the topology of the multicore 

and the physical bandwidth constraints of the interconnect. We present a layered approach to describe 

and solve the buffer-allocation problem as well as related subproblems, using mixed-integer linear pro- 

gramming. We show that the buffer-allocation problem is NP-complete, and present a more scalable for- 

mulation as a semi-definite programming problem. We evaluate the proposed LP methods by allocating 

around 10 0 0 buffers corresponding to processing one frame in the L ong- T erm E volution (LTE) standard, 

onto a multicore with 80 processing elements. We introduce a solution approach that allowed to find an 

optimal allocation in around 2 hours , which is at least two orders of magnitude faster than a straightfor- 

ward formulation. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

In the era of multi-cores and many-cores several programming 

abstractions have been proposed to hide the complexity of con- 

current execution and memory management. For deeply embed- 

ded applications, however, the placement of tasks to processors 

and data to memories is still carefully done statically by hand. This 

is the case, for example, in digital baseband processing on base 

stations for today’s wireless communication standards. In these 

systems, tasks are allocated statically, often to customized pro- 

cessors that were specifically designed to implement a particular 

task. Once the task allocation is done, designers spend a consider- 

able amount of time either placing the data to the right memory 

or designing the memory subsystem that best suits the applica- 

∗ Corresponding author. 

E-mail addresses: andres.goens@tu-dresden.de (A. Goens),

jeronimo.castrillon@tu-dresden.de (J. Castrillon), odendahl@ice.rwth-aachen.de 

(M. Odendahl), leupers@ice.rwth-aachen.de (R. Leupers). 

tion. Static data allocation is preferred over a dynamic one to pre- 

vent fragmentation, non-deterministic allocation time and out-of- 

memory errors. Due to the increase in both software and hardware 

complexity, this manual allocation has become prohibitively com- 

plex, since the number of possibilities grows exponentially. The 

somewhat modest example of allocating 100 logical buffers to 40 

physical memories already has about as many possible allocations 

as there are atoms in the visible universe. 

The complexity of embedded software has increased as a con- 

sequence of the development of new standards (e.g., for communi- 

cation or video encoding). 

Applications have become more dynamic and irregular, with 

data and scenario-dependent execution paths. Examples of this 

are the different modes of the L ong- T erm E volution (LTE) stan- 

dard [1] or multicore engine control unit (ECU) applications in the 

automotive industry [2] . The hardware complexity has increased 

accordingly, showing a steady increase in processor counts and an 

even more dramatic evolution of system interconnect and mem- 

ory interfaces. There are today new possibilities to interface to 

http://dx.doi.org/10.1016/j.sysarc.2016.05.002 

1383-7621/© 2016 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.sysarc.2016.05.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2016.05.002&domain=pdf
mailto:andres.goens@tu-dresden.de
mailto:jeronimo.castrillon@tu-dresden.de
mailto:odendahl@ice.rwth-aachen.de
mailto:leupers@ice.rwth-aachen.de
http://dx.doi.org/10.1016/j.sysarc.2016.05.002


70 A. Goens et al. / Journal of Systems Architecture 66-67 (2016) 69–83 

Fig. 1. A schematic example of buffer allocation. 

Dynamic Random-Access Memory (DRAM) that provide high band- 

width over multiple channels. Examples for these emerging tech- 

niques, include 2.5D (High Bandwidth Memory) or 3D (Wide I/O) 

DRAM integration [3] . These new storage capabilities are reflected 

in a wide variety of communication possibilities in modern multi- 

cores. In the future, we expect even more complex architectures, 

such as the HAEC box [4] or the Hybrid Memory Cube (HMC) [5] , 

where multiple paths exist to route communication between two 

components, such that the decision of which path to take becomes 

non-trivial. 

The problem of mapping logical data buffers to memory has 

been analyzed in the context of well-structured application mod- 

els with explicit communication, such as directed acyclic task 

graphs [6–8] and dataflow programming models [9–11] . In those 

models there is a clear producer-consumer relationship among 

tasks, which makes it easier to reason about task interactions 

and the impact of buffer allocation on application performance 

(throughput and latency). Additionally, these models only take into 

account the relationship between tasks that arises from the com- 

putation itself, disregarding the architecture’s topology and its im- 

plications. In this paper we adopt a more general view in which 

logical buffers can be accessed and modified by different compu- 

tational tasks at arbitrary instances of time, and which also takes 

into account specifics of the architecture where the computation 

will be executed. In our approach, instead of looking for an alloca- 

tion that maximizes application throughput, we find an allocation 

that meets individual bandwidth demands required to meet multi- 

ple throughput constraints in complex applications. 

We call the binding of a computational task running on a pro- 

cessor and accessing a given buffer a flow . Intuitively, an appli- 

cation is represented as a collection of small computational tasks 

that operate on a single shared buffer in memory. Multiple tasks 

can work on the same buffer, but no task accesses more than one 

buffer (see upper part of Fig. 1 ). 

This model allows system architects to reason about the mem- 

ory subsystem while fixing all other aspects of the execution be- 

havior of the application. 

The model used in this paper can be seen as a generalization 

of variable lifetime ranges in traditional compilers used for regis- 

ter allocation. Dataflow models, commonly used in the embedded 

domain [12] , can also be represented with our model. The flows 

can be obtained from profiling runs of dataflow applications and 

individual bandwidth demands can be obtained from global appli- 

cation throughput constraints. 

The buffer-allocation problem is then to find a valid and optimal 

allocation of the logical buffers of the application onto the plat- 

form memories (see Fig. 1 ). A valid solution is one in which all 

buffers can be accessed with the bandwidth required by the appli- 

cation and that all buffers fit into the platform memories. What is 

considered an optimal solution depends on the optimization crite- 

ria. In this case it is a solution that either has maximal balancing of 

the bandwidth loads in all channels or the balanced use of mem- 

ory. A combination of both can also be considered by weighting 

both of the aforementioned criteria. 

In this paper we introduce a mathematical model of the buffer- 

allocation problem and propose a solution using linear program- 

ming. The main contributions of this paper are: 

• A clear presentation and formulation of the problem and a 

structured, layered solution using mixed-integer linear pro- 

gramming (MILP). This allows to decompose the problem into 

sub-problems and rises the potential for sequential optimiza- 

tions. 

• A topology-aware, optimal-allocation formulation that can deal 

with complex architectures and tackles memory fragmentation 

issues by directly generating buffer addresses. 

• A detailed complexity and scalability analysis of the problem 

and the presented solution. In particular, we show that the 

problem is NP-complete. 

• A more scalable formulation as a semi-definite programming 

problem. 

The rest of this paper is organized as follows: Section 2 dis- 

cusses related work. Section 3 gives a formal presentation of the 

problem and our proposed solution with an MILP formulation. It 

gradually introduces sub-problems and their solutions until the 

complete problem is addressed. Then, an analysis of the model—

including the complexity of the problem and scalability of our 

approach—is presented in Section 4 . Section 5 presents the results 

of a real-world use case, namely LTE, which shows both the ben- 

efits of our approach and its limitations. Finally, we conclude our 

work and give an outlook on potential directions of future work in 

Section 6 . 

2. Related work 

The concept of formulating and solving an allocation problem 

as a MILP problem is certainly not new. In the field of hard- 

ware synthesis, similar models and ideas for memory allocation 

have been used for application-specific integrated circuit (ASIC) 

design [13,14] . In more recent work, Meftali et al. [15] present a 

complete workflow for generating the memory subsystem, from a 

hardware-design perspective. 

In the context of software synthesis, the problem of allocat- 

ing logical memory units, like buffers, to the physical resources of 

a system has been considered in approaches to task-to-processor 

mapping [8,16,17] , but only as a corollary result of the mapping. As 

mentioned in Section 1 , allocation of communication resources for 

programming models based on dataflow actors and process net- 

works have been proposed, e.g., in [11,18] . These approaches are 

restricted to single producer-consumer relations between compu- 

tational tasks (actors or processes). 

Memory address generation has also been studied in a single- 

processor context. Lorenz et al. [19] consider genetic algorithms for 

optimal performance in digital signal processors (DSPs) with sin- 

gle instruction multiple data (SIMD). In comparison, our memory- 

address generation model is much simpler, as it is only concerned 

with avoiding fragmentation. However, it is embedded in the rest 

of our approach and can thus be applied to much more complex, 

heterogeneous multi-processor architectures. More related to our 

memory-address model is the one proposed by Damavandpeyma 

et al. [20] . In this work, the authors devise a strategy for mini- 

mizing temperatures on scratchpad-based systems by careful vari- 

able allocation. However, their model considers a single scratchpad 

memory, and the objective of minimizing temperatures requires 

a very different allocation than in a resource-constrained multi- 

memory system. 



Download	English	Version:

https://daneshyari.com/en/article/460510

Download	Persian	Version:

https://daneshyari.com/article/460510

Daneshyari.com

https://daneshyari.com/en/article/460510
https://daneshyari.com/article/460510
https://daneshyari.com/

