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We consider stability and uniqueness in real phase retrieval problems over general input
sets, when the data consists of random and noisy quadratic measurements of an unknown
input x0 ∈ R

n that lies in a general set T . We study conditions under which x0 can
be stably recovered from the measurements. In the noise-free setting we show that the
number of measurements needed to ensure a unique and stable solution depends on the
set T through its Gaussian mean-width, which can be computed explicitly for many sets of
interest. In particular, for k-sparse inputs, O (k log(n/k)) measurements suffice, while if x0
is an arbitrary vector in R

n , O (n) measurements are sufficient.
In the noisy case, we show that if the empirical risk is bounded by a given, computable
constant that depends only on statistical properties of the noise, the error with respect
to the true input is bounded by the same Gaussian parameter (up to logarithmic factors).
Therefore, the number of measurements required for stable recovery is the same as in the
noise-free setting up to log factors.
It turns out that the complexity parameter for the quadratic problem is the same as the
one used for analyzing stability in linear measurements under very general conditions.
Thus, no substantial price has to be paid in terms of stability when there is no knowledge
of the phase of the measurements.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Recently, there has been growing interest in recovering an input vector x0 ∈ R
n from quadratic measurements

yi = ∣∣〈ai, x0〉
∣∣2 + wi, i = 1, . . . , N. (1.1)

Here, we focus on the case in which (ai)
N
i=1 are selected independently according to a random vector a on R

n , and (wi)
N
i=1

are selected independently according to the noise w , and are assumed to be independent of (ai)
N
i=1.

Since only the magnitude of 〈ai, x0〉 is measured, and not the phase (or the sign, in the real case), this family of problems
is referred to as phase retrieval. These problems arise in many areas of optics, where the detector can only measure the
magnitude of the received optical wave. Several applications of phase retrieval include X-ray crystallography, transmission
electron microscopy and coherent diffractive imaging [39,20,19,46].
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Many algorithmic methods have been developed for phase recovery (see, e.g., [20]) which often rely on prior informa-
tion on the signal, such as positivity or support constraints. One of the most popular techniques is based on alternating
projections, such as the Gerchberg and Saxton [16] and Fienup [15] iterations. To circumvent the difficulties associated with
convergence of alternating projections, more recently, phase retrieval problems have been treated using semidefinite relax-
ation, and low-rank matrix recovery ideas [7,41]. Another possible approach that potentially leads to robust solutions is
to assume that the input signal x0 is sparse, namely, that it contains only a few non-zeros values in an appropriate basis
expansion. Both the semidefinite relaxation [41,21,37] and greedy recovery methods [36,5,40] can be extended to phase
retrieval of sparse inputs.

Despite the vast interest in phase retrieval, there has been little theoretical work on the fundamental limits of this
problem, which is the focus of this article. One question in this context is to estimate the number of measurements that are
needed in order to ensure robust recovery of the input x0 – and regardless of the specific recovery method used. Several
recent works treat this problem; most, study the case in which x0 is a general input, namely, there is no sparsity (or
other) constraints on x0. For example, in this case, with probability one, N = 4n − 2 randomized equations are sufficient for
recovery using a brute force (intractable) method, when there is no noise [2]. However, it is not clear, even in that restricted
scenario, whether a stable recovery method exists with this number of measurements. In [8,9] the authors consider the
case in which ai are real or complex vectors that are either uniform on the sphere of radius

√
n, or iid zero-mean Gaussian

vectors with unit variance. Under these assumptions they show that on the order of n measurements are needed in order
to recover a generic x0 (and while using a semidefinite relaxation approach). In the presence of noise, it is shown in [8]
that one can find an estimate x̂ satisfying

∥∥x̂ − eiφx
∥∥

2 � C0 min

(
‖x‖2,

‖w‖1

N‖x‖2

)
, (1.2)

for some φ, where C0 is a constant and w is the noise vector that is assumed to be bounded so that ‖w‖1 is finite.
The article [27] treats the case in which the input x0 is of norm one and k-sparse, and ai are independent, zero-mean

normal vectors. It shows that if N is on the order of k2 log n, then recovery is possible (by using a sparse semidefinite
relaxation approach).

Here, we treat the real case and random measurements, using reasonable ensembles. The first question addressed is
that of stable uniqueness, namely, identifying conditions under which a unique solution can be found in a stable way.
Though the results presented here apply to arbitrary sets T ⊂ R

n , the examples we consider are T = R
n , and the class of

k-sparse vectors. For the latter, O (k log(n/k)) measurements suffice for stability. This result is better by a factor of k than
the estimate from [27]. Also, when x0 can be any vector in R

n , O (n) measurements suffice, which is also the bound derived
in [8].

It turns out that the same complexity parameter, the Gaussian mean-width, captures both linear and quadratic problems.
This observation will be discussed in Section 5. It implies that in a rather general sense, the number of measurements
required for stable recovery in the quadratic setting, is of the same order of magnitude as the one needed to ensure
stability under linear sampling.

The second main result of this article deals with the noisy phase retrieval problem; more specifically, recovery from noisy
measurements of the form (1.1), generated by x0 ∈ T . A straightforward approach is to select x̂ that minimizes the empirical
risk, but since this leads to a nonconvex problem, finding its global solution is in general not possible. Nonetheless, one
can show that if the empirical risk of x̂ is bounded by a given, computable constant (and that depends only on statistical
properties of the noise), then ‖x̂ − x0‖2‖x̂ + x0‖2 may be controlled using the Gaussian mean-width of the set. In particular,
for reasonable noise levels, in the case of k-sparse vectors on the Euclidean sphere Sn−1, one can guarantee stable recovery
from O (k log(n/k)(log2 k + log2 log(n/k))) noisy measurements, and when x0 can be any vector in Sn−1, O (n log2 n) noisy
measurements are sufficient. An exact formulation of both main results is presented in the next section.

A conclusion that could have practical importance is that although the squared error for nonlinear measurements as
in (1.1) cannot be minimized directly, it is sufficient to find a point for which the empirical error is bounded by a known
constant. Thus, one may use any desired recovery algorithm and check whether the solution x̂ satisfies the bound. For
this purpose, methods such as those developed in [40] are advantageous since they allow for arbitrary initial points. As
different initializations lead to different choices of x̂, the algorithm can be used several times until an appropriate value of
x̂ is found. The theoretical analysis ensures that such an x̂ is sufficiently close to x0 or to −x0 if enough measurements are
used.

The reminder of the article is organized as follows. The problem and main results are formulated in Section 2. Stability
results in the noise-free setting are developed in Section 3, while the noisy setting is treated in Section 4. In Section 5 the
relation between the results in the quadratic case and those in the linear setting is discussed.

Throughout the article we use the following notation. All absolute constants (that is, fixed positive numbers) are denoted
by c1, c2, etc. Their values may change from line to line. The expectation is denoted by E, and if the probability space is a
product space (Ω × Ω ′,μ ⊗ μ′), then Eμ and Eμ′ are the conditional expectations. In the context of an empirical process,
P N f denotes the empirical mean of f while P f is its expectation. If X is a random variable, then ‖X‖Lp = (E|X |p)1/p . If
x ∈ R

n , ‖ ‖p denotes its �p norm. �n
p is the normed space (Rn,‖ ‖p), the corresponding unit ball is Bn

p and Sn−1 is the
Euclidean sphere in R

n .
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