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Optimizing the acquisition matrix is useful for compressed sensing of signals that are
sparse in overcomplete dictionaries, because the acquisition matrix can be adapted to the
particular correlations of the dictionary atoms. In this paper a novel formulation of the
optimization problem is proposed, in the form of a rank-constrained nearest correlation
matrix problem. Furthermore, improvements for three existing optimization algorithms
are introduced, which are shown to be particular instances of the proposed formulation.
Simulation results show notable improvements and superior robustness in sparse signal
recovery.
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1. Introduction

Compressed Sensing (CS) [1] studies the possibility of acquiring a signal x that is a priori known to be sparse in some
dictionary D with fewer linear measurements than required by the traditional sampling theorem. In many cases the dictio-
nary D is an orthogonal basis, but we consider here the general case of an overcomplete dictionary.

Consider a signal x ∈R
n that is sparse in some dictionary D ∈ R

n×N , i.e. x has at least one decomposition γ that has few
non-zero coefficients. A number of m < n linear measurements are taken as inner products of x with a set of m projection
vectors, arranged as the rows of an acquisition matrix P ∈R

m×n

y = P x = P D︸︷︷︸
De

γ . (1)

The equation system (1) is undetermined. Under certain conditions on P and D [2], a sufficiently sparse decomposition
vector γ is shown to be the unique solution to the optimization problem

γ̂ = arg min
γ

‖γ ‖�0 subject to y = P Dγ , (2)

where ‖γ ‖�0 is the number of non-zero elements of the vector γ (the �0 “norm”). Solving (2) means finding the sparsest
decomposition of y in the effective dictionary De := P D , which is the computational expensive stage of the process, with
a large number of algorithms developed for this purpose. After obtaining the approximate decomposition vector γ̂ , the
reconstructed signal x̂ is obtained as

x̂ = Dγ̂ . (3)
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The strict condition y = P Dγ in (2) is often unrealistic, and therefore a practical version of (2) is

γ̂ = arg min
γ

‖γ ‖�0 subject to ‖y − P Dγ ‖� ε, (4)

where ε takes into account possible noisy measurements and approximately sparse signals.
Unfortunately, finding the exact solution of the �0 minimization problem (2) is combinatorial and NP-hard. One of the

ways to circumvent this is replacing the �0 norm with �1, leading to a tractable convex optimization problem

γ̂ = arg min
γ

‖γ ‖�1 subject to y = P Dγ , (5)

which requires however more strict conditions on P and D to guarantee the uniqueness of the solution. This is known as
Basis Pursuit (BP) [3]. The �1 problem can be converted to a linear program, which is well known in literature and has
many efficient solving algorithms available. A second option is to settle with a possibly sub-optimal solution of (2), using a
pursuit or thresholding algorithm [4,5] to estimate a solution to (2). In both cases, robustness to noise can be enforced by
replacing the strict condition y = P Dγ with a robust ‖y − P Dγ ‖2 � ε .

The choice of the acquisition matrix P is governed by the principle of incoherence with D: a “good” acquisition matrix
has its rows (i.e. the projection vectors) incoherent with the columns of D . Coherence measures the largest correlation
between two sets of vectors, and thus incoherence requires a low maximal correlation. Random projections vectors were
shown to be a good choice with orthogonal bases [6], since random vectors are incoherent with any fixed basis with high
probability. In the overcomplete case, a better acquisition matrix can often be found if one takes into account the corre-
lations between dictionary atoms, since it is not uncommon that dictionaries exhibit significant atom correlation. This is
especially true with dictionaries that are learned, i.e. optimized for a particular set of signals. As such, a number of algo-
rithms have been developed for finding optimized projections for signals that are sparse in overcomplete dictionaries [7–9].

This paper proposes modifications for improving three existing algorithms for finding optimized projections. Further, we
show that our improvements can be unified in a single formulation based on solving a rank-constrained nearest correlation
matrix problem [10]. The rest of this paper is organized as follows. In Section 2 we review the main condition for perfect
recoverability that underlies most of the considered algorithms. Section 3 presents three state-of-the-art algorithms for
finding optimized projections. Improvements for all of them are proposed in Section 4, and we present the proposed unified
formulation in Section 5. Simulation results are presented in Section 6. Finally, conclusions are drawn in Section 7.

Throughout this paper we use the following notations. The acquired signal is an n-dimensional vector x, the dictionary is
D of size n × N,n < N . A decomposition of x in D is typically denoted as γ , i.e. x = Dγ . The acquisition matrix is P of size
m × n,m < n. The product De := P D is the effective dictionary, of size m × N . The Gram matrix of D is denoted G := DT D ,
while the Gram matrix of the effective dictionary De is denoted Ge and referred to as effective Gram matrix.

2. Acquisition matrices and mutual coherence

A widely used approach to ensure the uniqueness of the solution γ̂ in (2) or (5) uses the mutual coherence of the
effective dictionary De := P D . The mutual coherence of a dictionary is defined as the maximum absolute value of the inner
products of any two of its normalized columns [11]. Thus, the mutual coherence of De is the maximum absolute off-diagonal
value of the Gram matrix Ge := DT

e · De , after normalizing the columns of De . The mutual coherence provides a lower bound
for the perfect recovery of sparse signals, as shown in Theorem 1 [11–13]:

Theorem 1. Consider an overcomplete dictionary D with mutual coherence μ(D) and a signal x such that x = Dγ . If condition (6) is
true:

‖γ ‖0 <
1

2

(
1 + 1

μ(D)

)
, (6)

then the following hold:

1. γ is the sparsest decomposition of x in D, i.e. it is the solution of the optimization problem

arg min
γ

‖γ ‖0 subject to x = Dγ ,

2. γ is recoverable using �1 minimization [3], i.e. it is also the solution of

arg min
γ

‖γ ‖1 subject to x = Dγ ,

3. γ is recoverable using Orthogonal Matching Pursuit [4].
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