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We construct a continuous wavelet transform (CWT) on the torus T2 following
a group-theoretical approach based on the conformal group SO(2, 2). The Euclidean
limit reproduces wavelets on the plane R2 with two dilations, which can be
defined through the natural tensor product representation of usual wavelets
on R. Restricting ourselves to a single dilation imposes severe conditions for the
mother wavelet that can be overcome by adding extra modular group SL(2,Z)
transformations, thus leading to the concept of modular wavelets. We define
modular-admissible functions and prove frame conditions.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Since the pioneer work of Grossmann, Morlet and Paul [1], several extensions of the standard continuous
wavelet transform (CWT) on R to general manifolds X have been constructed (see e.g. [2,3] for general
reviews and [4,5] for recent papers on WT and Gabor systems on homogeneous manifolds). Particular in-
teresting examples are the construction of CWT on: spheres S

N−1, by means of an appropriate unitary
representation of the Lorentz group in N +1 dimensions SO(N, 1) [6–10], on the upper sheet H2

+ of the two-
sheeted hyperboloid H

2 [11], or its stereographical projection onto the open unit disk D1 = SO(1, 2)/SO(2),
and the construction of conformal wavelets in the (compactified) complex Minkowski space [12]. The basic
ingredient in all these constructions is a group of transformations G which contains dilations and motions
on X, together with a transitive action of G on X.
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In this article we first extend the group theoretical construction of wavelets on the circle S
1 based on the

group SL(2,R), given in [16], to wavelets on the two-torus T
2 = S

1 × S
1 based on the group SO(2, 2), and

introduce additional modular transformations in SL(2,Z), which lead to the concept of modular wavelets.
We must stress that the topological torus T2 = (R/2πZ)2 can be obtained from the plane R

2 by imposing
periodic boundary conditions and these are often used in physical and mathematical models to simulate
a large system by modeling a small part that is far from its edge. For instance, in the Quantum Hall Ef-
fect [13], the topology of the problem is that of a torus [14], and modular transformations are of crucial
importance for the classification of fractional quantum numbers [15]. Moreover, the Discrete Fourier Trans-
form, either in one or more dimensions, implicitly assumes that the signal or image is periodic, and this
is a valid approximation as long as edge effects are negligible. Besides, wavelets on R

2 (or higher dimen-
sions) encounters applications in microlocal analysis [17], and thus wavelets on the torus would be helpful
in toroidal microlocal analysis [18].

The organization of the paper is as follows. In Section 2 we briefly remind the group theoretical construc-
tion of the CWT on S

2 based on the Lorentz group SO(3, 1), which serves as an introduction and to set
notation. In Section 3 we construct the CWT on the topological torus T2 based on the group SO(2, 2), intro-
ducing admissibility conditions and proving the existence of admissible functions and continuous wavelets
frames. This construction naturally relies on two dilations. Usual wavelet constructions rely on a single
dilation but, in our construction, the frame property is lost when restricting to a single (let us say, diagonal)
dilation. The way out is to introduce additional ingredients in the wavelet parameter space, like modular
transformations, which lead to the concept of modular wavelets. This construction is made in Section 4.

2. CWT on the sphere S
2 based on SO(3, 1): A reminder

Let us denote by L2(S2, dΩ) the Hilbert space of square integrable functions on the two-sphere S
2, with

the usual measure dΩ = sin θ dθ dϕ (we shall omit dΩ and just write L2(S2)). An orthonormal basis of
L2(S2) is given in terms of spherical harmonics:

Y m
l (θ, ϕ) = NlmPm

l (cos θ)eimϕ, l = 0, 1, . . . , m = −l, . . . , l (1)

fulfilling

〈
Y m
l

∣∣ Y m′

l′
〉

=
π̂

θ=0

π̂

ϕ=−π

Y m
l (θ, ϕ)Y m′

l′ (θ, ϕ) dΩ = δll′δmm′ , (2)

with a convenient choice of normalization factors Nlm, where Pm
l are the associated Legendre polynomials.

The problem of defining a satisfactory dilation on the sphere was solved by Antoine and Vandergheynst
in [7], where they used a group-theoretical approach based on the Lorentz group G = SO(3, 1). Dilation is
embedded into G via the Iwasawa decomposition G = KAN with K compact, A Abelian and N nilpotent
subgroups. The parameter space X of their CWT is the quotient G/N . The expression for the dilation, with
parameter a > 0, of the colatitude angle θ is

θa = 2 arctan
(
a tan(θ/2)

)
, (3)

and it has a direct geometrical interpretation as a dilation around the North Pole of the sphere, lifted from
the tangent plane by inverse stereographic projection. For any function f ∈ L2(S2), a unitary representation
of this dilation is given by

[
DS

2

a f
]
(θ, ϕ) = λ(a, θ)1/2f(θ1/a, ϕ), (4)
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