Contents lists available at SciVerse ScienceDirect

Applied and Computational Harmonic Analysis

www.elsevier.com/locate/acha

Case Studies Signal processing by alternate dual Gabor frames

Department of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran

Ali Akbar Arefijamaal*, Esmaeel Zekaee

ARTICLE INFO

ABSTRACT

Article history: Received 28 June 2012 Revised 10 September 2012 Accepted 10 June 2013 Available online 13 June 2013 Communicated by M.V. Wickerhauser

Keywords: Gabor frame Dual frame Alternate dual frame Signal denoising Duality principles in Gabor frame theory have a key roll in applications. Each dual frame enable us to write every element in the underlying Hilbert space as a linear combination of the frame elements. Canonical dual is used usually in this construction. In this article, it is proved that by using alternate duals we obtain more accurate results.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

Gabor frames play a very important role in signal analysis and many other parts of applied mathematics [1,9,11]. They are generated by modulations and translations of one single function. A Gabor frame is a frame for $L^2(\mathbb{R})$ of the form $\{E_{mb}T_{na}g\}_{m,n\in\mathbb{Z}}$ for some $g \in L^2(\mathbb{R})$ and a, b > 0, where $T_{na}f(x) = f(x - na)$ and $E_{mb}f(x) = e^{2imbx}f(x)$. This means that there exist constants A, B > 0 such that

$$A\|f\|^{2} \leq \sum_{m,n\in\mathbb{Z}} \left|\langle f, E_{mb}T_{na}g\rangle\right|^{2} \leq B\|f\|^{2}, \quad \forall f \in L^{2}(\mathbb{R}).$$

$$(1.1)$$

Various characterizations of Gabor frames have been given by Wexler and Raz [15], Daubechise et al. [6], Ron and Shen [14]. It is well known that two Gabor frames $\{E_{mb}T_{na}g\}_{m,n\in\mathbb{Z}}$ and $\{E_{mb}T_{na}h\}_{m,n\in\mathbb{Z}}$ are called *dual* of each other if

$$f = \sum_{m,n\in\mathbb{Z}} \langle f, E_{mb}T_{na}h \rangle E_{mb}T_{na}g, \quad \forall f \in L^2(\mathbb{R}).$$
(1.2)

Although a Gabor frame $\{E_{mb}T_{na}g\}_{m,n\in\mathbb{Z}}$ when ab < 1 has infinitely many dual, the standard choice of h is $S^{-1}g$, where $S: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ defined by

$$Sf = \sum_{m,n\in\mathbb{Z}} \langle f, E_{mb}T_{na}g \rangle E_{mb}T_{na}g, \quad \forall f \in L^2(\mathbb{R}),$$

is the frame operator of $\{E_{mb}T_{na}g\}_{m,n\in\mathbb{Z}}$. The dual generated by $S^{-1}g$ is called the *canonical dual* and other dual are called *alternate duals*. Several duality principles in Gabor frame theory have been proposed; Janssen [12], Gröchenig [10], Casazza et al. [2], Christensen [3], Christensen and Kim [4].

* Corresponding author.

E-mail addresses: arefijamaal@hsu.ac.ir, arefijamaal@gmail.com (A.A. Arefijamaal), zekaee.esmaeel@gmail.com (E. Zekaee).

^{1063-5203/\$ –} see front matter @ 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.acha.2013.06.001

A well-known characterization of canonical dual Gabor frames is demonstrated in the following proposition.

Proposition 1. (See [1].) Let $N \in \mathbb{N}$ and let $g \in L^2(\mathbb{R})$ be a function with support in [0, N]. Assume that $b \leq \frac{1}{N}$ and that there exist A, B > 0 such that

$$A \leq G(x) := \sum_{n \in \mathbb{Z}} |g(x - na)|^2 \leq B \quad a.e. \ x.$$

Then $\{E_{mb}T_{nag}\}_{m,n\in\mathbb{Z}}$ is a frame for $L^2(\mathbb{R})$, and the canonical dual generator is given by

$$S^{-1}g = \frac{b}{G}g.$$

Due to work by Janssen [13] two Bessel sequences $\{E_{mb}T_{na}g\}_{m,n\in\mathbb{Z}}$ and $\{E_{mb}T_{na}h\}_{m,n\in\mathbb{Z}}$ form dual frames for $L^2(\mathbb{R})$ if and only if

$$\sum_{k\in\mathbb{Z}}\overline{g(x-n/b-ka)}h(x-ka)=b\delta_{n,0} \quad \text{a.e. } x\in[0,a].$$

Finally, for frames generated by any compactly supported function g whose integer-translates form a partition of unity, e.g., a B-spline, Christensen and Kim constructed a class of dual frame generators, formed by linear combinations of translates of g [3,4]:

Theorem 1.1. Let $N \in \mathbb{N}$ and $b \in (0, \frac{1}{2N-1}]$. Let $g \in L^2(\mathbb{R})$ be a real-valued bounded function with supp $g \subseteq [0, N]$, for which

$$\sum_{n\in\mathbb{Z}}g(x-n)=1.$$

Then the functions h and k defined by

$$h(x) = bg(x) + 2b \sum_{n=1}^{N-1} g(x+n), \qquad k(x) = \sum_{n=-N+1}^{N-1} a_n g(x+n),$$

where

$$a_0 = b$$
 $a_n + a_{-n} = 2b$, $n = 1, 2, \dots, N - 1$

generate two dual frames $\{E_{mb}T_nh\}_{m,n\in\mathbb{Z}}$ and $\{E_{mb}T_nk\}_{m,n\in\mathbb{Z}}$ for $\{E_{mb}T_ng\}_{m,n\in\mathbb{Z}}$.

In this paper we introduce a general method of constructing alternate duals for a given frame. Our explicit construction can be easily applied for Gabor frames. We show that by choosing an appropriate dual Gabor frame generator, (1.2) provides more precise results.

2. Alternates dual frames

A sequence $\{g_i\}_{i=1}^{\infty}$ in a separable Hilbert space \mathcal{H} is called a *frame* for \mathcal{H} if there are constants A, B > 0 satisfying,

$$A\|f\|^{2} \leq \sum_{i=1}^{\infty} \left|\langle f, g_{i} \rangle\right|^{2} \leq B\|f\|^{2}, \ (f \in \mathcal{H}).$$

$$(2.1)$$

If the right-hand side of (2.1) holds, it is said to be a Bessel sequence. A sequence $\{f_i\}_{i=1}^{\infty} \subseteq \mathcal{H}$ is called a *dual frame* for $\{g_i\}_{i=1}^{\infty}$ if

$$f = \sum_{i=1}^{\infty} \langle f, f_i \rangle g_i.$$
(2.2)

The classical choice for $\{f_i\}_{i=1}^{\infty}$ is $\{S^{-1}g_i\}_{i=1}^{\infty}$, where the bounded and invertible frame operator $S: \mathcal{H} \to \mathcal{H}$ is defined by

$$Sf = \sum_{i=1}^{\infty} \langle f, g_i \rangle g_i.$$

Download English Version:

https://daneshyari.com/en/article/4605157

Download Persian Version:

https://daneshyari.com/article/4605157

Daneshyari.com